Study on estimation method of rock mass discontinuity shear strength based on three-dimensional laser scanning and image technique

2012 ◽  
Vol 23 (6) ◽  
pp. 908-913 ◽  
Author(s):  
Huiming Tang ◽  
Yunfeng Ge ◽  
Liangqing Wang ◽  
Yi Yuan ◽  
Lei Huang ◽  
...  
Author(s):  
P. Wang ◽  
C. Xing

In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yi Cai ◽  
Hui-ming Tang ◽  
Ding-jian Wang ◽  
Tao Wen

The primary objective of this study is to develop a parameter with a clear physical meaning to estimate the surface roughness of rock discontinuities. This parameter must be closely related to the shear strength of rock discontinuities. The first part of this study focuses on defining and computing this parameter. The estimation formula for the shear strength of a triangle within a discontinuity surface is derived based on Patton’s model. The parameter, namely, the index of roughness (IR), is then proposed to quantitatively estimate discontinuity roughness. Based on laser scanning techniques, digital models of discontinuities and discontinuity profiles are constructed, and then their corresponding IR values are computed. In the second part of this study, the computational processes and estimated effects of the two-dimensional (2D) and three-dimensional (3D) IR values of the discontinuities are illustrated through several applications. Results show that the 2D and 3D IR values of these discontinuities indicate anisotropy and sampling interval effects. In addition, a strong linear correlation is detected between IR and the joint roughness coefficient (JRC) for seventy-four profiles and eleven discontinuity specimens, respectively. Finally, the proposed method, back analysis method, root mean square (Z2) method, and Grasselli’s method are compared to study the use of the parameter IR.


2014 ◽  
Vol 51 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Jiayi Shen ◽  
Murat Karakus

Existing numerical modeling of three-dimensional (3D) slopes is performed mainly by using the shear strength reduction (SSR) technique based on the linear Mohr–Coulomb (MC) criterion, whereas the nonlinear failure criterion for rock slope stability is seldom used in slope modeling. However, it is known that rock mass strength is a nonlinear stress function and that, therefore, the linear MC criterion does not agree with the rock mass failure envelope very well. In this research, a nonlinear SSR technique is proposed that can use the Hoek–Brown (HB) criterion to represent the nonlinear behavior of a rock mass in the FLAC3D program to analyze 3D slope stability. Extensive case studies are carried out to investigate the influence of the convergence criterion and boundary conditions on the 3D slope modeling. Results show that the convergence criterion used in the 3D model plays an important role, not only in terms of calculation of the factor of safety (FOS), but also in terms of the shape of the failure surface. The case studies also demonstrate that the value of the FOS for a given slope will be significantly influenced by the boundary condition when the slope angle is less than 50°.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


2015 ◽  
Vol 6 (1) ◽  
pp. 19-29 ◽  
Author(s):  
G. Bitelli ◽  
P. Conte ◽  
T. Csoknyai ◽  
E. Mandanici

The management of an urban context in a Smart City perspective requires the development of innovative projects, with new applications in multidisciplinary research areas. They can be related to many aspects of city life and urban management: fuel consumption monitoring, energy efficiency issues, environment, social organization, traffic, urban transformations, etc. Geomatics, the modern discipline of gathering, storing, processing, and delivering digital spatially referenced information, can play a fundamental role in many of these areas, providing new efficient and productive methods for a precise mapping of different phenomena by traditional cartographic representation or by new methods of data visualization and manipulation (e.g. three-dimensional modelling, data fusion, etc.). The technologies involved are based on airborne or satellite remote sensing (in visible, near infrared, thermal bands), laser scanning, digital photogrammetry, satellite positioning and, first of all, appropriate sensor integration (online or offline). The aim of this work is to present and analyse some new opportunities offered by Geomatics technologies for a Smart City management, with a specific interest towards the energy sector related to buildings. Reducing consumption and CO2 emissions is a primary objective to be pursued for a sustainable development and, in this direction, an accurate knowledge of energy consumptions and waste for heating of single houses, blocks or districts is needed. A synoptic information regarding a city or a portion of a city can be acquired through sensors on board of airplanes or satellite platforms, operating in the thermal band. A problem to be investigated at the scale A problem to be investigated at the scale of the whole urban context is the Urban Heat Island (UHI), a phenomenon known and studied in the last decades. UHI is related not only to sensible heat released by anthropic activities, but also to land use variations and evapotranspiration reduction. The availability of thermal satellite sensors is fundamental to carry out multi-temporal studies in order to evaluate the dynamic behaviour of the UHI for a city. Working with a greater detail, districts or single buildings can be analysed by specifically designed airborne surveys. The activity has been recently carried out in the EnergyCity project, developed in the framework of the Central Europe programme established by UE. As demonstrated by the project, such data can be successfully integrated in a GIS storing all relevant data about buildings and energy supply, in order to create a powerful geospatial database for a Decision Support System assisting to reduce energy losses and CO2 emissions. Today, aerial thermal mapping could be furthermore integrated by terrestrial 3D surveys realized with Mobile Mapping Systems through multisensor platforms comprising thermal camera/s, laser scanning, GPS, inertial systems, etc. In this way the product can be a true 3D thermal model with good geometric properties, enlarging the possibilities in respect to conventional qualitative 2D images with simple colour palettes. Finally, some applications in the energy sector could benefit from the availability of a true 3D City Model, where the buildings are carefully described through three-dimensional elements. The processing of airborne LiDAR datasets for automated and semi-automated extraction of 3D buildings can provide such new generation of 3D city models.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Sign in / Sign up

Export Citation Format

Share Document