Effect of Al content on the reaction between Fe-10Mn-xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO-SiO2-Al2O3-MgO slag

2022 ◽  
Vol 29 (2) ◽  
pp. 256-262
Author(s):  
Huixiang Yu ◽  
Dexin Yang ◽  
Jiaming Zhang ◽  
Guangyuan Qiu ◽  
Ni Zhang
Keyword(s):  
Author(s):  
Kathleen B. Reuter

The reaction rate and efficiency of piperazine to 1,4-diazabicyclo-octane (DABCO) depends on the Si/Al ratio of the MFI topology catalysts. The Al was shown to be the active site, however, in the Si/Al range of 30-200 the reaction rate increases as the Si/Al ratio increases. The objective of this work was to determine the location and concentration of Al to explain this inverse relationship of Al content with reaction rate.Two silicalite catalysts in the form of 1/16 inch SiO2/Al2O3 bonded extrudates were examined: catalyst A with a Si/Al of 83; and catalyst B, the acid/phosphate Al extracted form of catalyst A, with a Si/Al of 175. Five extrudates from each catalyst were fractured in the transverse direction and particles were obtained from the fracture surfaces near the center of the extrudate diameter. Particles were also obtained from the outside surfaces of five extrudates.


2013 ◽  
Vol 762 ◽  
pp. 747-752
Author(s):  
Pablo Rodriguez-Calvillo ◽  
M. Perez-Sine ◽  
Jürgen Schneider ◽  
Harti Hermann ◽  
Jose María Cabrera ◽  
...  

FeSi steels with and without addition of Al are widely used as electrical steels. To improve the knowledge of the effects by the addition of Si and Al on the hardening and softening under hot rolling conditions, the behaviour of the flow curves in a wide range of temperatures and deformation velocities have been studied.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1478 ◽  
Author(s):  
Luděk Stratil ◽  
Vít Horník ◽  
Petr Dymáček ◽  
Pavla Roupcová ◽  
Jiří Svoboda

The aim of the paper is to evaluate the effect of aluminum content on the oxidation resistance of new-generation of oxide dispersion strengthened (ODS) alloy at 1200 °C. Three grades of the alloy of chemical composition Fe-15Cr-xAl-4Y2O3 with different Al contents x = 0.3 wt.%, 2.0 wt.% and 5.5 wt.% are prepared by mechanical alloying. The alloys are consolidated by high temperature rolling followed by heat treatment. To study the oxidation resistance the samples are isothermally aged in the air for 1 h, 4 h, 16 h and 64 h at 1200 °C. The oxidation kinetics, composition and formation mechanism of the oxide layers are analyzed. The weight gain of prepared steels is estimated. The kinetics of oxidation is studied on metallographic cross-sections of the exposed samples by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analysis. The oxides on the surfaces are identified by X‑ray diffraction (XRD) analysis. The Al content significantly enhances the oxidation resistance of the alloy. For a sufficiently high Al content in the alloy a compact oxide layer of α‑Al2O3 on the surface is formed, which significantly suppresses further oxidation process.


2020 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Haibin Geng ◽  
Hanzhe Ye ◽  
Xingliang Chen ◽  
Sibin Du

This paper aims to clarify the phase composition in each sub-layer of tandem absorber TiMoAlON film and verify its thermal stability. The deposited multilayer Ti/(Mo-TiAlN)/(Mo-TiAlON)/Al2O3 films include an infrared reflectance layer, light interference absorptive layers with different metal doping amounts, and an anti-reflectance layer. The layer thicknesses of Ti, Mo-TiAlN, Mo-TiAlON, and Al2O3 are 100, 300, 200, and 80 nm, respectively. Al content increases to 12 at.% and the ratio of N/O is nearly 0.1, which means nitride continuously changes to oxide. According to X-ray Diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results, the diffraction peak that appears at 2θ = 40° demonstrates that Mo element aggregates in the substitutional solid solution (Ti,Al)(O,N) columnar grain. TiMoAlON films have low reflectivity in the spectrum range of 300–900 nm. When Al content is more than 10 at.%, absorptivity is almost in the spectrum range from visible to infrared, but absorptivity decreases in the ultraviolet spectrum range. When Al content is increased to 12 at.%, absorptivity α decreases by 0.05 in the experimental conditions. After baking in atmosphere at 500 °C for 8 h, the film has the highest absorptivity when doped with 2 at.% Mo. In the visible-light range, α = 0.97, and in the whole ultraviolet-visible-light near-infrared spectrum range, α = 0.94, and emissivity ε = 0.02 at room temperature and ε = 0.10 at 500 °C.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 766
Author(s):  
Tihomir Car ◽  
Ivan Jakovac ◽  
Ivana Šarić ◽  
Sigrid Bernstorff ◽  
Maja Micetic

Structural, optical and electrical properties of Al+MoO3 and Au+MoO3 thin films prepared by simultaneous magnetron sputtering deposition were investigated. The influence of MoO3 sputtering power on the Al and Au nanoparticle formation and spatial distribution was explored. We demonstrated the formation of spatially arranged Au nanoparticles in the MoO3 matrix, while Al incorporates in the MoO3 matrix without nanoparticle formation. The dependence of the Au nanoparticle size and arrangement on the MoO3 sputtering power was established. The Al-based films show a decrease of overall absorption with an Al content increase, while the Au-based films have the opposite trend. The transport properties of the investigated films also are completely different. The resistivity of the Al-based films increases with the Al content, while it decreases with the Au content increase. The reason is a different transport mechanism that occurs in the films due to their different structural properties. The choice of the incorporated material (Al or Au) and its volume percentage in the MoO3 matrix enables the design of materials with desirable optical and electrical characteristics for a variety of applications.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 814
Author(s):  
Yaping Bai ◽  
Meng Li ◽  
Chao Cheng ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

In this study, Fe-25Mn-xAl-8Ni-C alloys (x = 10 wt.%, 11 wt.%, 12 wt.%, 13 wt.%) were prepared by a vacuum arc melting method, and the microstructure of this series of alloys and the in situ tensile deformation behavior were studied. The results showed that Fe-25Mn-xAl-8Ni-C alloys mainly contained austenite phase with a small amount of NiAl compound. With the content of Al increasing, the amount of austenite decreased while the amount of NiAl compound increased. When the Al content increased to 12 wt.%, the interface between austenite and NiAl compound and austenitic internal started to precipitate k-carbide phase. In situ tensile results also showed that as the content of Al increased, the alloy elongation decreased gradually, and the tensile strength first increased and then decreased. When the Al content was up to 11 wt.%, the elongation and tensile strength were 2.6% and 702.5 MPa, respectively; the results of in situ tensile dynamic observations show that during the process of stretching, austenite deformed first, and crack initiation mainly occurred at the interface between austenite and NiAl compound, and propagated along the interface, resulting in fracture of the alloy.


Author(s):  
Mariola Kądziołka-Gaweł ◽  
Maria Czaja ◽  
Mateusz Dulski ◽  
Tomasz Krzykawski ◽  
Magdalena Szubka

AbstractMössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis-octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. This temperature can be treated as the second stage of dehydroxylation. The temperature dependence on the integral intensity ratio between bands centered at ~590 and 705 cm−1 (I590/I705) clearly reflects the temperature at which six-coordinated polyhedra are transformed into five-coordinated polyhedra. X-ray photoelectron spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p and O1s core levels, highlighted a route to identify the position of Si, Al, K and Fe cations in a structure of layered silicates with temperature. All the measurements show that the sample with a higher aluminum content and a lower iron content in octahedral sites starts to undergo a structural reorganization at a relatively higher temperature than the less aluminum-rich sample does. This suggests that iron may perform an important role in the initiation of the dehydroxylation of aluminoceladonites.


1995 ◽  
Vol 49 (2) ◽  
pp. 156-162 ◽  
Author(s):  
Janet S. MacFall ◽  
Anthony A. Ribeiro ◽  
Gary P. Cofer ◽  
Ko-Hsiu G. Dai ◽  
William Labiosa ◽  
...  

Development of methods for the detection and measurement of aluminum (Al) is crucial for our understanding of Al(III) chemistry and toxicity in natural waters, soil solutions, and environmental samples. Traditional colorimetric assays, by their very nature, alter solution Al(III) chemistry, potentially biasing measurements. Methods based on 27Al NMR spectroscopy have the advantage of being nondestructive and of not altering the chemistry of the solution. Standard commercial NMR probes and sample tubes, unfortunately, are constructed from aluminum-containing components. These materials give substantial background signal, which is detected as a large, broad hump, overwhelming signals from dilute samples. We describe here the construction of two novel NMR probes and a sample container built from a variety of materials with low Al content. The designs feature the use of transversely mounted solenoid coils with aluminum-free sample holders. The sample container features a second chamber which can be filled with an external reference solution. These novel 27Al NMR probes are being used for the NMR spectroscopic investigation and quantitation of natural, dilute (10−6 M) Al(III) samples from the environment.


Sign in / Sign up

Export Citation Format

Share Document