scholarly journals Application of cellulose-based polymers in oil well cementing

2019 ◽  
Vol 10 (2) ◽  
pp. 319-325
Author(s):  
Ghulam Abbas ◽  
Sonny Irawan ◽  
Khalil Rehman Memon ◽  
Javed Khan

AbstractCellulose-based polymers have been successfully used in many areas of petroleum engineering especially in enhanced oil recovery drilling fluid, fracturing and cementing. This paper presents the application of cellulose-based polymer in oil well cementing. These polymers work as multifunctional additive in cement slurry that reduce the quantity of additives and lessen the operational cost of cementing operation. The viscosity of cellulose polymers such as hydroxyethyl cellulose (HEC), carboxymethylcellulose (CMC) and hydroxypropyl methylcellulose (HPMC) has been determined at various temperatures to evaluate the thermal degradation. Moreover, polymers are incorporated in cement slurry to evaluate the properties and affect in cement slurry at 90 °C. The API properties like rheology, free water separation, fluid loss and compressive strength of slurries with and without polymer have been determined at 90 °C. The experimental results showed that the viscosity of HPMC polymer was enhanced at 90 °C than other cellulose-based polymers. The comparative and experimental analyses showed that the implementation of cellulose-based polymers improves the API properties of cement slurry at 90 °C. The increased viscosity of these polymers showed high rheology that was adjusted by adding dispersant which optimizes the rheology of slurry. Further, improved API properties, i.e., zero free water separation, none sedimentation, less than 50 ml/30 min fluid loss and high compressive strength, were obtained through HEC, CMC and HPMC polymer. It is concluded that cellulose-based polymers are efficient and effective in cement slurry that work as multifunctional additive and improve API properties and cement durability. The cellulose-based polymers work as multifunctional additive that reduces the quantity of other additives in cement slurry and ultimately reduces the operational cost of cementing operation. The comparative analysis of this study opens the window for petroleum industry for proper selection of cellulose-based polymer in designing of cement slurry.

2013 ◽  
Vol 787 ◽  
pp. 222-227 ◽  
Author(s):  
Ghulam Abbas ◽  
Sonny Irawan ◽  
Sandeep Kumar ◽  
Ahmed A.I. Elrayah

At present, high temperature oil wells are known as the most problematic for cementing operation due to limitations of polymer. The polymers are significantly used as mutlifunctional additives for improving the properties of cement slurry. At high temperature, viscosity of polymer decreases and unable to obtained desired properties of cement slurry. It becomes then major cause of fluid loss and gas migration during cementing operations. Thus, it necessitates for polymers that can able to enhance viscosity of slurry at elevated temperatures. This paper is aiming to study Hydroxypropylmethylcellulose (HPMC) polymer at high temperature that is able to increase the viscosity at elevated temperature. In response, experiments were conducted to characterize rheological properties of HPMC at different temperatures (30 to 100 °C). Then it was incorporated as multifunctional additive in cement slurry for determining API properties (fluid loss, free water, thickening time and compressive strength). It was observed that HPMC polymer has remarkable rheological properties that can have higher viscosity with respect to high temperatures. The best concentration of HPMC was found from 0.30 to 0.50 gallon per sack. This concentration showed minimal fluid loss, zero free water, high compressive strength and wide range of thickening time in cement slurry. The results signified that HPMC polymer is becoming multifunctional additive in cement slurry to improve the API properties of cement slurry and unlock high temperature oil wells for cementing operations.


2021 ◽  
pp. 147-156
Author(s):  
Ali M. Hadi ◽  
Ayad A. Al-Haleem

Cement is a major component in oil and gas drilling operations that is used to maintain the integrity of boreholes by preventing the movement of formation fluids through the annular space and outside the casing. In 2019, Iraq National Oil Company ordered all international oil and gas companies which are working in Iraq to use Iraqi cement (made in Iraq) in all Iraqi oil fields; however, the X-ray fluorescence (XRF) and compressive strength results in this study show that this cement is not matching with American Petroleum Institute (API) standards. During this study, barolift was used to improve the properties of Iraqi cement used in oil wells at high pressure and high temperature (HPHT). Barolift (1 g) was added to cement admixture to evaluate its influence on improving the performance of cement, mainly related to the property of toughness.  Primarily, the quality and quantity of cement contents were determined using X-ray fluorescence. Experiments were conducted to examine the characteristics of the base cement and the cement system containing 1g of barolift, such as thickening time, free water, compressive strength, and porosity. X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were conducted for analyzing the microstructure of cement powder. The experimental results showed that barolift acted as a retarder and improved the thickening time, slightly increased the free water, enhanced the mechanical properties, reduced the porosity, and aided in scheming new cement slurry to withstand the HPHT conditions. Microstructure analysis showed that barolift particles blocked the capillaries by filling cement spaces and, thus, a denser and stricter cement network was achieved.


2016 ◽  
Vol 841 ◽  
pp. 148-156 ◽  
Author(s):  
Alagu Karthik Valliappan ◽  
Raja Rajeswary Suppiah ◽  
Sonny Irawan ◽  
Ridho Bayuaji

For many years, Ordinary Portland Cement (OPC) is used in oil well cementing operation. But the OPC gets degraded in the acidic environment because of having poor mechanical characteristics. A new technology called geopolymeric cement system is developed from the secondary byproducts of the industry to replace the conventional cement slurry in oil well cementing operation. This study focus on the preparation of cement slurry with new formulation using fly ash and alkali binders at two sodium hydroxide treatment methods with various concentrations of NaOH solution and analyzing the prepared cement slurry for compressive strength, defiance to acid and fluid loss amount. Different cement slurry compositions made of 70:30 fly ash to alkaline activator ratios with 10, 12, 14 Molar NaOH solution with two sodium hydroxide treatment methods of direct addition and mixing after one day soaking of NaOH were prepared and cured for 24 hours at a temperature of 80°C and pressure 3000 psi. The obtained cement specimens were tested for compressive strength, resistance towards acid and density. Then based on the results, geopolymer can be considered as alternative for Class G cement in oil well cementing operation due to its high compressive strength and high acid resistance.


2021 ◽  
Vol 11 (2) ◽  
pp. 30-48
Author(s):  
Amel Habeeb Assi ◽  
Faleh H. M. Almahdawi ◽  
Qasim Abdulridha Khalti

The reinforced fiberglass in cement slurry reflects the effect on its properties compared to usual additives. Fiberglass is typically used in cement slurry design for one or another of the following goals: (Earth earthquake, bearing storage, and with differential stresses, to enhance cement durability and increase its compressive strength). The main goal is to use glass fiber and ground fiberglass to improve the tensile strength and moderate compressive strength significantly. On the other hand, the use of glass fibers led to a slight increase in the value of thickening time, which is a desirable effect. Eleven glass fiber samples and milled glass fiber were used to show these materials' effect on Iraqi cement with (0.125, 0.25, 0.5, 0.75, 1, and 2) % of cement weight. Those tests used to study cement slurry‟s following properties were compressive strength, thickening time, rheology properties of free water, filtering, and density. These evaluations showed that slurries with less than 1% fiber content gave a higher compressive strength than a sample containing more than 1% glass fiber. However, the slurry mixed with equal or less than 1% milled glass fiber is higher compressive than the sample mixed with more than 1% milled glass fiber. So the optimal concentration for glass fiber is less than 1% by weight of cement (BWOC); either for milled glass fiber, it is less or equal to 1% BWOC. Both materials contributed to increasing the compressive strength of the cement. However, attention must be paid to the idealThis work is licensed under a Creative Commons Attribution 4.0 International License. concentration that should be added during the cement slurry preparation because if we use these two materials carelessly for the ideal concentration, this leads to the collapse and bombardment of the resistance of the cement rock. In other words, the collapse of cement resistance and causing problems during the cementing process.


2019 ◽  
Vol 10 (3) ◽  
pp. 1097-1107 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Rahul Gajbhiye ◽  
Anas Ahmed ◽  
Ahmed Abdulhamid Mahmoud

AbstractDurability and long-term integrity of oil well cement are the most important parameters to be considered while designing the cement slurry, especially in the high-pressure and high-temperature (HPHT) environments. In this study, the effect of adding the polypropylene fiber (PPF) to Saudi Class G cement is evaluated under HPHT conditions. The effect of the PPF on the cement compressive and tensile strength, thickening time, density, free water, porosity, and permeability was studied. The effect of the PPF particles on the cement sheath microstructure was studied through powder X-ray diffraction (XRD) and scanning electron microscope. The results obtained showed that PPF did not affect the cement rheology, density, and free water. The addition of PPF considerably decreased the thickening time and improved the tensile and compressive strength of the cement. 0.75% by weight of cement (BWOC) of PPF reduced the thickening time by 75%, from 317 to 78 min. The compressive strength of the cement increased by 17.8% after adding 0.5% BWOC of PPF, while the tensile strength increased by 18% when 0.75% of PPF is used which is attributed to the formation of stable forms of calcium silicate hydrates because of the ability of PPF to accelerate cement hydration process as indicated by the XRD results. The ability of the PPF to decrease the cement thickening time along with its ability to improve the cement strength suggests the use of PPF as an alternative for silica floor in shallow wells where a reduction in thickening time will decrease the wait on cement time. Porosity and permeability of the base cement were also decreased by incorporating PPF because of the pores filling effect of PPF particles as indicated by the microstructure analysis.


2021 ◽  
Author(s):  
Rahul Jadhav ◽  
Thomas Pisklak

Abstract To mitigate strength retrogression at temperatures, higher than 230°F, well cement designs typically include strength retrogression control additives (SRCAs). Solid siliceous materials (e.g., silica flour, fume, and sized-sands) are commonly used SRCAs that are incorporated into cements using dry-blending techniques. This study highlights liquid silica compositions as alternative SRCAs to dry-blended silica for high-temperature cementing. Liquid additives can be managed easily, delivered accurately, and offer a reduced on-site footprint, thus making them particularly advantageous for operations offshore and in remote locations. This paper presents a study on the use of liquid silica compositions as SRCAs and their effect on cement slurry properties, such as thickening time, mixability, fluid loss, rheology, and free water. The cement slurry used during the current study was prepared and tested according to API RP 10B-2 (2005). The performance of the liquid silica composition was tested at temperatures up to 400°F. Set cement samples were prepared using the liquid silica composition and silica flour, cured for up to 14 days at different temperatures. In addition, permeability testing was also performed on the samples. This paper presents the findings of this research, including strength and permeability test results on cement blends cured at temperatures of 300, 330, 350, and 400°F. The liquid silica composition, which provided silica to the cement formulation equivalent to 35% BWOC dry silica (48% BWOC liquid SRCA), functioned effectively as an SRCA at temperatures up to 330°F. Signs of strength retrogression were observed at 350°F and were more pronounced at 400°F. A greater concentration of the liquid silica composition may be necessary to prevent strength retrogression at temperatures higher than 330°F. The liquid silica composition also demonstrated mild retardation and a dispersing effect on the slurry. However, it helped enable improved slurry stability and suspension, thus providing improved control over free water without adverse effects on fluid loss and sedimentation. The study results demonstrate that a liquid SRCA can help improve the performance of annular cement designs to provide dependable barriers and effective zonal isolation during high-temperature cementing applications. The improved performance enabled by this liquid silica composition verifies its potential use as an alternative SRCA for high-temperature oil well cementing operations.


2021 ◽  
Author(s):  
Akinwale Akintola

Abstract The effect of RHA on Compressive Strength as well as other parameters like Consistency and Rheological properties etc. on Class G cement slurry is studied. The following additives were used; Rice Husk Ash (for Compressive Strength), Guinea Corn Husk Ash (Retarder) and other liquid additives which are fluid Loss Additive, Antifoam, Dispersant, Retarder and Water in the formulation of the cement slurry. This research is a comparative analysis based on experimental study on the effectiveness of the various additives on the cement slurry using pure Class G cement slurry combined with all liquid additives as a control. At a Bottomhole Circulating Temperature of 140°C, the Compressive Strength tests carried out on the slurry samples showed that the strength of the concrete increases as the concentration of the RHA increases with time of curing, also the compressive strength started to increase. The best Compressive Strength result was obtained with the percentages of cement replaced by 13.01% RHA. The strength showed impressive increase with time, with highest compressive strength encountered in 24 hours. The Thickening Time of the set Cement Slurry was considered using Class G cement and different percentage of RHA. The final Thickening Time decreases with increase in Rice Husk Ash. Decrease in the setting time was noticeable from 1.87 hrs (at 13.01% RHA) from 40bc to 100 bc. At BHST of 700°C increasing the ash concentration resulted in decrease in the Plastic Viscosities (PV) and increase in the Yield Points of the slurries. The results indicate that the slurries formulated using this ash has viscosities which are within the recommended values showing it is desirable to pump such slurry. For both 124°C and Bottom Hole Pressure of 7700psi the amount of fluid loss increases as the percentage of RHA added increases but it is below 50cp which is acceptable.


2021 ◽  
Vol 325 ◽  
pp. 47-52
Author(s):  
Fedor L. Kapustin ◽  
N.N. Bashkatov ◽  
Rudolf Hela

When constructing deep wells for oil and gas production in difficult geological conditions, special lightweight oil-well cements are used. To reduce the density and water separation of the cement slurry as well as to increase the strength, corrosion resistance of cement stone and the quality of well cementing, opal-containing rocks, fly ash, microsphere and other lightening additives are introduced into the cement composition. The influence of sedimentary rocks, such as opoka, tripoli, and diatomite containing from 43 to 81% amorphous silica on the grindability, rheological and physical-mechanical properties of lightweight oil-well Portland cement has been studied. The twelve cement compositions with different content of additives (from 30 to 45%) that meet the requirements of the standard for density, spreadability, water separation, thickening time and flexural strength were selected. The introduction of 45% diatomite or tripoli significantly reduces the duration of cement grinding, provides the cement slurry with water-cement ratio of 0.9 with better density and flexural strength, respectively, 1480 kg/m3 and 1.1–1.5 MPa.


2014 ◽  
Vol 692 ◽  
pp. 433-438 ◽  
Author(s):  
Jing Fu Zhang ◽  
Jin Long Yang ◽  
Kai Liu ◽  
Bo Wang ◽  
Rui Xue Hou

Carbon dioxide CO2could corrode the oil well cement paste matrix under agreeable moisture and pressure condition in deep oil wells, which could decrease the compressive strength and damage the annular seal reliability of cement paste matrix. The problem of oil well cement paste matrix corrosion by CO2was researched in the paper for obtain the feasible corrosion prevention technical measures. The microstructure and compressive strength of corroded cement paste matrix were examined by scanning electron microscopeSEMand strength test instrument etc. under different corrosion conditions. The mechanism and effect law of corrosion on oil well cement paste matrix by CO2were analyzed. And the suitable method to protect CO2corrosion in deep oil wells was explored. The results show that the corrosion mechanism of cement paste matrix by CO2was that the wetting phase CO2could generate chemical reaction with original hydration products produced from cement hydration, which CaCO3were developed and the original composition and microstructure of cement paste matrix were destroyed. The compressive strength of corrosion cement paste matrix always was lower than that of un-corrosion cement paste matrix. The compressive strength of corrosion cement paste matrix decreased with increase of curing temperature and differential pressure. The corroded degree of cement paste matrix was intimately related with the compositions of cement slurry. Developing and design anti-corrosive cement slurry should base on effectively improving the compact degree and original strength of cement paste matrix. The compounding additive R designed in the paper could effectively improve the anti-corrosive ability of cement slurry.


2011 ◽  
Vol 361-363 ◽  
pp. 487-492
Author(s):  
Sheng Lai Guo ◽  
Yu Huan Bu

The fluid loss control additive plays a key role in reducing reservoir damage and improving the cementing quality of an oil well. Aiming at good fluid loss control ability and excellent dispersibility, a new dispersive type fluid loss control additive was synthesized through orthogonal experiment with 2-acrylamido-2- methyl propane sulfonic acid, acrylamide, N, N-dimethylacrylamide and maleic anhydride. The orthogonal experiment result shows that the influence on the properties of FLCA decreases in the order: PH value > monomer concentration > monomer mole ratio > initiator concentration > temperature. The result indicates that the optimal conditions for FLCA were 4/2.5/2.5/1 of mole ratio of AMPS/AM /NNDMA/MA, 32.5% total monomer concentration in deionized water, 1.0% (by weight of monomer) ammonium persulfate/sodium bisulfite, 4 of PH value, 40°Cof temperature. The synthesized copolymer was identified by FTIR analysis. The results show the dispersive type fluid loss control additive has excellent dispersibility, fluid loss control ability, thermal resistant and salt tolerant ability. As the temperature increases, the thickening time of the slurry containing the synthesized additive reduces. The copolymer is expected to be a good fluid loss control additive.


Sign in / Sign up

Export Citation Format

Share Document