scholarly journals In-silico and in-vivo evaluation of sesamol and its derivatives for benign prostatic hypertrophy

3 Biotech ◽  
2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Abhishek Shah ◽  
Aarti Abhishek Shah ◽  
Krishnadas Nandakumar ◽  
Avinash Kumar ◽  
Aravinda Pai ◽  
...  

AbstractPharmacological treatment for BPH includes 5-α reductase inhibitors as Finasteride and Dutasteride as a monotherapy or in combination with antimuscarinic drugs, alpha-blockers, 5-phosphodiesterase inhibitor drugs. Androgen receptor inhibitors revealed several adverse events as decreased libido, erectile dysfunction, ejaculatory dysfunction, and gynecomastia. Hence, the emergence of complementary and alternative medications having safety profile—preferably, edible natural products—would be highly desirable. In-silico studies based on Maestro Molecular Modelling platform (version 10.5) by Schrӧdinger, LLC was used to identify the lead molecules. The in-vivo activity studied on rats gave the positive results. The findings based on experiments as antioxidant parameters showed the potential to quench the free radicals. The significant results were also seen in prostatic index and histopathological studies supported the above findings. Based on these data, sesamol and derivative have proven efficacy in protecting against testosterone induced BPH.

2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 15 (1) ◽  
pp. 102-118 ◽  
Author(s):  
Carolina Campos-Rodríguez ◽  
José G. Trujillo-Ferrara ◽  
Ameyali Alvarez-Guerra ◽  
Irán M. Cumbres Vargas ◽  
Roberto I. Cuevas-Hernández ◽  
...  

Background: Thalidomide, the first synthesized phthalimide, has demonstrated sedative- hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides have an interesting chemical structure that confers important biological properties. Objective: Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic and anticonvulsant effects were tested. Method: Homology modeling and molecular docking were employed to predict recognition of the analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the open field test and elevated plus maze (EPM). The compounds were tested in mouse models of acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP; 10 mg/kg). Results: The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg, and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP and R-TASP (316 mg/kg) lowered the convulsive and death rate. Conclusion: The chiral compounds exhibited a non-competitive NMDAR antagonist profile and the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to be supported by the in silico studies, which evidenced a high affinity of phthalimides for the hNMDAR and mGluR type 1.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1294
Author(s):  
Samuel Álvarez-Almazán ◽  
Gabriel Navarrete-Vázquez ◽  
Itzia Irene Padilla-Martínez ◽  
José Correa-Basurto ◽  
Diana Alemán-González-Duhart ◽  
...  

By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110166
Author(s):  
Xin Yi Lim ◽  
Janice Sue Wen Chan ◽  
Terence Yew Chin Tan ◽  
Bee Ping Teh ◽  
Mohd Ridzuan Mohd Abd Razak ◽  
...  

Drug repurposing is commonly employed in the search for potential therapeutic agents. Andrographis paniculata, a medicinal plant commonly used for symptomatic relief of the common cold, and its phytoconstituent andrographolide, have been repeatedly identified as potential antivirals against SARS-CoV-2. In light of new evidence emerging since the onset of the COVID-19 pandemic, this rapid review was conducted to identify and evaluate the current SARS-CoV-2 antiviral evidence for A. paniculata, andrographolide, and andrographolide analogs. A systematic search and screen strategy of electronic databases and gray literature was undertaken to identify relevant primary articles. One target-based in vitro study reported the 3CLpro inhibitory activity of andrographolide as being no better than disulfiram. Another Vero cell-based study reported potential SARS-CoV-2 inhibitory activity for both andrographolide and A. paniculata extract. Eleven in silico studies predicted the binding of andrographolide and its analogs to several key antiviral targets of SARS-CoV-2 including the spike protein-ACE-2 receptor complex, spike protein, ACE-2 receptor, RdRp, 3CLpro, PLpro, and N-protein RNA-binding domain. In conclusion, in silico and in vitro studies collectively suggest multi-pathway targeting SARS-CoV-2 antiviral properties of andrographolide and its analogs, but in vivo data are needed to support these predictions.


2018 ◽  
Vol 93 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Ajmer Singh Grewal ◽  
Rajeev Kharb ◽  
Deo Nandan Prasad ◽  
Jagdeep Singh Dua ◽  
Viney Lather

Sign in / Sign up

Export Citation Format

Share Document