Effect of flapping frequency, Reynolds number and angle of attack on the aerodynamic force coefficients of a translating wing

Author(s):  
Sai Sandeep Dammati ◽  
Srikanth Goli ◽  
Sai Subhankar Varanasi ◽  
P. Srinag ◽  
Arnab Roy
Author(s):  
Tiago Cavalcanti Rolim ◽  
Sheila Cristina Cintra ◽  
Marcela Marques da Cruz Pellegrini

This work presents a computational tool for preliminary analysis of hypersonic vehicles, based on local surface inclination methods: the HipeX. This program was developed for reading standard triangulation language (STL) geometry files and calculating pressure coefficient and temperature distributions over vehicle’s surface using the Newtonian, modified Newtonian or tangent-wedge methods. Validations were made with a cylinder and a sphere, where only the Newtonian method was applied, and with experimental data from Apollo capsule at Mach 10, where the Newtonian and the modified Newtonian methods were applied. These validations presented the code capability to read geometries as well as to estimate aerodynamic force coefficients. A preliminary application was to predict the aerodynamic force coefficients of a generic hypersonic vehicle over constant dynamic pressure trajectories of 23,940, 60,000 and 95,760 N/m2 with zero angle of attack. With a fixed dynamic pressure of 60,000 N/m2, this vehicle was tested over several Mach numbers and with angle of attack variation from -10 to 10 deg. Zero angle of attack investigation showed minor changes on the force coefficients with altitude, while the variation of angle of attack produced more pronounced variations on these parameters. Maximum flow temperatures over vehicle’s surface were estimated ranging from 850 to 5,315 K.


2021 ◽  
Author(s):  
W. M. U. Weerasekara ◽  
H. M. C. D. B. Gunarathna ◽  
W. A. K. P. Wanigasooriya ◽  
T. P. Miyanawala

Abstract Predicting aerodynamic forces on bluff bodies remains to be a challenging task due to the unpredictable flow behavior, specifically at higher Reynolds numbers. Experimental approaches to determine aerodynamic coefficients could be costly and time consuming. In the meantime, use of numerical techniques could also require a considerable computational cost and time depending on complexity of the flow behavior. The research focusses on developing an effective deep learning technique to predict aerodynamic force coefficients acting on elliptical bluff bodies for a given aspect ratio and given flow condition. Collecting data for drag and lift coefficients of several aspect ratios for flow conditions starting from onset of vortex shredding to verge of subcritical region is conducted by an accurate full order model. The specified region will provide a transient flow behavior and thus lift coefficient will be represented in terms of root mean square value and drag coefficient in terms of a mean value. With variations in flow behavior and vortex shredding frequencies, it requires to select an appropriate turbulence model, optimum discretization of fluid domain and time step to obtain an accurate result. Flow simulations are conducted primarily using Unsteady Reynolds Averaged Navier-Stokes Equations (URANS) model and Detached Eddy Simulations (DES) model. Effectiveness in using different turbulence models for specified flow regimes are also explored in comparison to available experimental results. At lower Reynolds numbers, aerodynamic force coefficients for a specified body will only depend on Reynolds number. But after a certain specific Reynolds number, aerodynamic forces are dependent on the Mach number in addition to Reynolds number. Therefore, for higher Reynolds numbers, aerodynamic force coefficients are recorded for multiple Mach numbers with same Reynolds number and will be fed to the neural network. With the development of the machine learning and neural network modelling, many of the fields have nourished and created effective and efficient technologies to ease complex functions and activities. Our goal is to ease the complexity in the computational fluid dynamic field with a deep neural network tool created to predict drag and lift coefficient of elliptical bluff bodies for a given aspect ratio with an acceptable accuracy level. Researchers have developed deep neural network tools to predict various flow conditions and have succeeded with sufficient accuracy and a satisfying reduction of computational cost. In our proposed deep learning neural network, we have chosen to model the network with inputs as the geometry setup and the flow conditions with validated drag and lift coefficients. The model will extract the necessary flow features into filters with the convolution operation performed on the inputs. Our main directive is to create a deep learned neural network tool to predict the target values within an acceptable range of accuracy while minimizing the computation cost.


2020 ◽  
Vol 12 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Alexandru-Iulian ONEL ◽  
Teodor-Viorel CHELARU

The paper presents a fast mathematical model that can be used to quickly assess the aerodynamic force coefficients of axisymmetric launchers as functions of Mach number and angle of attack. The tool developed based on the proposed mathematical model can be used separately or it can be integrated in a multidisciplinary optimisation algorithm for a preliminary small launcher design.


2020 ◽  
Vol 19 (3) ◽  
pp. 18-30
Author(s):  
M. M. Krikunov

The paper deals with disturbed transatmospheric motion of the first stage of an aerospace system. Deviations of atmospheric density and deviations of aerodynamic force coefficients from reference values are taken as disturbances. Optimal angle-of-attack schedules for the first stage are specified. Comparative analysis of optimal control programs for disturbed and undisturbed motion is carried out.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


Author(s):  
Zhang ZhunHyok ◽  
Won CholJin ◽  
Ri CholUk ◽  
Kim CholJin ◽  
Kim RyongSop

The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the coupling effect of aerodynamic force and aeroheating remains unclear. In this study, the thermal and structural response of aerospike mounted on the blunt nose body of hypersonic vehicle was numerically simulated by applying 3 D fluid-thermal-structural coupling method based on loosely-coupled strategy. In the simulation, the angle-of-attack and the spike’s length and diameter are differently set as α = 0°–10°, L/D = 1–2 and d/D = 0.05–0.15, respectively. Through the parametric study, the following results were obtained. Firstly, the increase of vehicle’s angle-of-attack and spike’s length unfavorably affect the thermal and structural response of aerospike. Secondly, the increase of spike’s diameter can improve its structural response characteristic. Finally, the aerospike with the angle-of-attack of 0° and the length and diameter of L/D = 1 and d/D = 0.15, respectively, is preferred in consideration of the effect of flight angle-of-attack and spike’s geometrical structure on the thermal and structural response of spike and the drag reduction of vehicle. The numerical calculation results provide a technical support for the safe design of aerospike.


2020 ◽  
Vol 12 ◽  
pp. 175682932097798
Author(s):  
Han Bao ◽  
Wenqing Yang ◽  
Dongfu Ma ◽  
Wenping Song ◽  
Bifeng Song

Bionic micro aerial vehicles have become popular because of their high thrust efficiency and deceptive appearances. Leading edge or trailing edge devices (such as slots or flaps) are often used to improve the flight performance. Birds in nature also have leading-edge devices, known as the alula that can improve their flight performance at large angles of attack. In the present study, the aerodynamic performance of a flapping airfoil with alula is numerically simulated to illustrate the effects of different alula geometric parameters. Different alula relative angles of attack β (the angle between the chord line of the alula and that of the main airfoil) and vertical distances h between the alula and the main airfoil are simulated at pre-stall and post-stall conditions. Results show that at pre-stall condition, the lift increases with the relative angle of attack and the vertical distance, but the aerodynamic performance is degraded in the presence of alula compared with no alula, whereas at post-stall condition, the alula greatly enhances the lift. However, there seems to be an optimal relative angle of attack for the maximum lift enhancement at a fixed vertical distance considering the unsteady effect, which may indicate birds can adjust the alula twisting at different spanwise positions to achieve the best flight performance. Different alula geometric parameters may affect the aerodynamic force by modifying the pressure distribution along the airfoil. The results are instructive for design of flapping-wing bionic unmanned air vehicles.


Sign in / Sign up

Export Citation Format

Share Document