Thermal and structural response of aerospike mounted on blunt-nose body

Author(s):  
Zhang ZhunHyok ◽  
Won CholJin ◽  
Ri CholUk ◽  
Kim CholJin ◽  
Kim RyongSop

The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the coupling effect of aerodynamic force and aeroheating remains unclear. In this study, the thermal and structural response of aerospike mounted on the blunt nose body of hypersonic vehicle was numerically simulated by applying 3 D fluid-thermal-structural coupling method based on loosely-coupled strategy. In the simulation, the angle-of-attack and the spike’s length and diameter are differently set as α = 0°–10°, L/D = 1–2 and d/D = 0.05–0.15, respectively. Through the parametric study, the following results were obtained. Firstly, the increase of vehicle’s angle-of-attack and spike’s length unfavorably affect the thermal and structural response of aerospike. Secondly, the increase of spike’s diameter can improve its structural response characteristic. Finally, the aerospike with the angle-of-attack of 0° and the length and diameter of L/D = 1 and d/D = 0.15, respectively, is preferred in consideration of the effect of flight angle-of-attack and spike’s geometrical structure on the thermal and structural response of spike and the drag reduction of vehicle. The numerical calculation results provide a technical support for the safe design of aerospike.

2019 ◽  
Vol 18 (2) ◽  
pp. 7-20 ◽  
Author(s):  
V. L. Balakin ◽  
M. M. Krikunov

Disturbed motion of a hypersonic vehicle in climb is analyzed. Deviations of atmospheric density from standard values and deviations of aerodynamic force coefficients from nominal values are taken as disturbances. Disturbed motion of a hypersonic vehicle with the optimum angle-of-attack schedule and nominal flight characteristics is modeled. Deviations of terminal conditions of disturbed motion from the target values of velocity, altitude and path inclination are determined. Using the method of Pontryagin’s maximum principle the problem of fuel mass minimum consumed in hypersonic acceleration climb is solved for disturbed motion. Optimal angle-of-attack schedules, optimal flight paths and finite values of the hypersonic vehicle’s mass are determined. Comparative analysis of optimal control programs and flight paths obtained for disturbed and undisturbed motion is carried out.


2012 ◽  
Vol 198-199 ◽  
pp. 207-211
Author(s):  
Yu Xiang Zhang ◽  
Jin Biao Xu ◽  
Fu Hou Xu ◽  
Hua Cheng Li

During the flight of the hypersonic Vehicle, the angle of attack will change with the flight attitude. At the same time, the aerodynamic forces from the surface of aircraft will also be changing. The pressure and friction force are the main causes of the aerodynamic heating, so the surface aerodynamic heating will change. By used the method of numerical calculation, the passage studied the influence the change the pressure and friction force on the distribution of heat flux in different angle of attack and the relationship between the change of the force of lift-drag and aerodynamic heating. The research suggested that the distribution of the heat flux had very good consistency with that of pressure and friction. The lift change was the dominant factors influence of pneumatic thermal change; the change of drag force affected only the speed of heat flux change.


2020 ◽  
Vol 12 ◽  
pp. 175682932097798
Author(s):  
Han Bao ◽  
Wenqing Yang ◽  
Dongfu Ma ◽  
Wenping Song ◽  
Bifeng Song

Bionic micro aerial vehicles have become popular because of their high thrust efficiency and deceptive appearances. Leading edge or trailing edge devices (such as slots or flaps) are often used to improve the flight performance. Birds in nature also have leading-edge devices, known as the alula that can improve their flight performance at large angles of attack. In the present study, the aerodynamic performance of a flapping airfoil with alula is numerically simulated to illustrate the effects of different alula geometric parameters. Different alula relative angles of attack β (the angle between the chord line of the alula and that of the main airfoil) and vertical distances h between the alula and the main airfoil are simulated at pre-stall and post-stall conditions. Results show that at pre-stall condition, the lift increases with the relative angle of attack and the vertical distance, but the aerodynamic performance is degraded in the presence of alula compared with no alula, whereas at post-stall condition, the alula greatly enhances the lift. However, there seems to be an optimal relative angle of attack for the maximum lift enhancement at a fixed vertical distance considering the unsteady effect, which may indicate birds can adjust the alula twisting at different spanwise positions to achieve the best flight performance. Different alula geometric parameters may affect the aerodynamic force by modifying the pressure distribution along the airfoil. The results are instructive for design of flapping-wing bionic unmanned air vehicles.


2021 ◽  
Author(s):  
Hu Daohang ◽  
Zhao Xin

<p>This paper introduces a new idea in the reconstruction and continuation projects. By arranging damping devices, the additional damping of the structure is increased, thereby reducing the dynamic response of the structure under the new seismic precautionary criterion. This paper focuses on the study of viscous dampers which one of the damping device, introduces the energy dissipation principle of viscous dampers, and combines a two-story plane frame case to analyze and compare the dynamic response between non-damping structure and damping structure. The location and quantity of the arrangement were compared with multiple models. Through analysis, it can be seen that by equipping with viscous dampers, seismic energy can be effectively dissipated, thereby reducing the workload of structural reinforcement and having less impact on the original structure. Finally, two commonly analysis methods in damping structures are studied, direct integration method and fast nonlinear analysis (FNA), the main differences between the two analysis methods are introduced, and the calculation results of the two methods are compared and analyzed.</p>


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Qihang Yuan ◽  
Yankui Wang ◽  
Zhongyang Qi

In general speaking, the missiles execute flight at high angles of attack in order to enhance their maneuverability. However, the inevitable side-force, which is caused by the asymmetric flow over these kinds of traditional slender body configurations with blunt nose at a high attack angle, induces the yawing or rolling deviation and the missiles will lose their predicted trajectory consequently. This study examines and diminishes the side-force induced by the inevitable asymmetric flow around this traditional slender body configuration with blunt nose at a high angle of attack (AoA = 50 deg). On one hand, the flow over a fixed blunt-nosed slender body model with strakes mounted at an axial position of x/D = 1.6–2.7 is investigated experimentally at α = 50 deg (D is the diameter of the model). On the other hand, the wingspan of the strakes is varied to investigate its effect on the leeward flow over the model. The Reynolds number is set at ReD = 1.54 × 105 based on D and incoming upstream velocity. The results verify that the formation of asymmetric vortices is hindered by the existence of strakes, and the strake-induced vortices develop symmetrically and contribute to the reduction in side-force of the model. In addition, the increase in strake wingspan reduces asymmetric characteristics of the vortex around the model and causes a significant decrease in side-force in each section measured. The strake with the 0.1D wingspan can reduce the sectional side-force to 25% of that in the condition without strakes.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


2018 ◽  
Vol 204 ◽  
pp. 06001
Author(s):  
Syamsuri ◽  
M Hasan Syafik ◽  
Yudho Putro Iswanto

At a cyclist drag racing champions greatly affect the speed of the bike, especially on the use of racing bike helmets. If the aerodynamic force from the racing bike helmet is getting smaller than the use of helmets on the bike racing will be more optimal and will affect the rate of the racer. In this study, numerical simulations were used to investigate the magnitude of the drag force that occurs around the surface of the helmet. With CFD software, 4 variations of attack angle 0°, 10°, 20° and 30° and variations of Reynold number 7.14x104, 1.00x105, and 1.16x105 are simulated to determine the flow characteristics of each state. The simulation results show that large area vortex is formed at the bottom of the helmet curve and dominates at the attack angle 30°. The result of the drag coefficient generated at the angle of attack 0° to 20° tends to decrease but at the attack angle 200 and 30° the drag coefficient increases.


Sign in / Sign up

Export Citation Format

Share Document