A method to induce significant production of conidia from Monilinia fructigena, Monilia polystroma, and Monilia yunnanensis

2014 ◽  
Vol 43 (5) ◽  
pp. 531-533 ◽  
Author(s):  
X. Q. Zhu ◽  
H. H. Zheng ◽  
Y. L. Fang ◽  
L. Y. Guo
Author(s):  
I. J. Holb

In the third part of this review, important features of disease management are summarised for brown rot fungi of fruit crops (Monilinia fructigena, Monilinia laxa, Monilinia fructicola and Monilia polystroma). Several methods of brown rot disease management practices were collected and interpreted in five main chapters. In these chapters, details are given about the legislative control measures, the cultural, physical, biological and chemical control methods. Chemical control is divided into two parts: pre-harvest and post-harvest chemical control. In addition, host resistance and fungicide resistance statuses are also included in this part of the review. Finally, future aspects of brown rot disease control are discussed.


2017 ◽  
Vol 62 (2) ◽  
pp. 167-177
Author(s):  
Natasa Duduk ◽  
Miljan Vasic ◽  
Nina Vuckovic ◽  
Aleksandra Zebeljan ◽  
Ivana Vico

Monilinia spp. are economically important pathogens of pome and stone fruits. Four Monilinia species are present in Serbia - Monilinia fructigena, M. laxa, M. fructicola and Monilia polystroma. As detection and identification of Monilinia species are complex, the aim of this research was to evaluate species-specific primers in PCR in order to standardize fast and reliable molecular methods for differentiation between the four Monilinia species. Isolates of M. fructigena, M. laxa, M. fructicola and M. polystroma from apple fruit and referent isolates from Italy and Japan were used for testing. Specific molecular detection of M. laxa was obtained using ITS1Mlx/ITS4Mlx and Ml-Mfg-F2/Ml-Mfc-R1 primer pairs, and M. fructicola using ITS1Mfcl/ITS4Mfcl and Mfc-F1/Mfc-R1 primer pairs. ITS1Mfgn/ITS4Mfgn and ITS1/Mfg-R2 primer pairs, described as M. fructigena species-specific, amplified M. fructigena and M. polystroma, as well. Specific detection of these two species as well as of all four tested Monilinia species was obtained using the reverse primer MO368-5 with forward primers MO368-8R, Laxa-R2 and MO368-10R in separate or in Multiplex PCR reactions.


Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 478-478 ◽  
Author(s):  
X. Q. Zhu ◽  
L. Y. Guo

In August 2008, mummies of dwarf sweet plum (Prunus aitianli) fruit covered with grayish, conidial tufts were found in an orchard in Mudanjiang City of Heilongjiang in China. Conidial masses were touched with a sterilized wire loop and streaked onto the surface of water agar (WA) plates. After incubating at 22 ± 2°C for 16 to 24 h, individual germinated spores were picked out with a sterilized scalpel blade under a microscope in a laminar flow cabinet, and transferred to potato dextrose agar (PDA) in petri dishes. Mycelium grew an average of 10.7 mm per day on PDA and formed a white-to-grayish colony with irregular, black stroma 12 days after incubation at 22 ± 2°C under 12-h light/12-h dark. The average size of stroma was 8.19 cm2 per petri dish 37 days after incubation in the dark. The conidia were one-celled, hyaline, lemon-shaped, 15.2 (10.8 to 18.9) × 10.9 (8.3 to 16.3) μm, and arranged in branched monilioid chains on inoculated apples. The PCR products of internal transcribed spacer (ITS) region 1 and 2 and 5.8S gene of the ribosomal RNA amplified with primers ITS1 and ITS4 was directly sequenced in both directions using the PCR primers. The sequence of the Monilia polystroma isolate (GenBank Accession No. GU067539) was identical to the reference isolate of M. polystroma (CBS102686), containing five nucleotides that distinguish it from Monilinia fructigena (1,3). The pathogen was identified as M. polystroma on the basis of morphological characteristics (3) and the sequence of internal transcribed spacer (ITS) region 1 and 2 and 5.8S gene of the ribosomal RNA. Pathogenicity was confirmed by inoculating surface-sterilized, mature plum and apple fruit wounded with a nail, with a mycelial plug (5 mm in diameter) of the fungus at each wound. Fruit treated with plain PDA plugs were used as a control. Inoculated fruits were placed in a sterilized moist chamber at room temperature (23 to 28°C). Fifteen plums and nine apples were used in each of two replicated tests. All inoculated fruit developed typical brown rot symptoms 4 days after inoculation, while the control fruit remained healthy. M. polystroma was reisolated from the inoculated fruit and identified by the above methods. M. polystroma was first reported on apple in Japan (3) and it was recently discovered in an apple orchard in Hungary (2). Although the occurrence of Monilinia fructicola, Monilinia laxa, and Monilinia fructigena (teleomorphs of the three Monilia spp.) in China have been documented, to our knowledge, this is the first report of the occurrence of M. polystroma in China. References: (1) C. E. Fulton et al. Eur. J. Plant Pathol. 105:495, 1999. (2) M. Petróczy and L. Palkovics. Eur. J. Plant Pathol. 125:343, 2009. (3) G. C. M. van Leeuwen et al. Mycol. Res. 106:444, 2002.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1219-1225 ◽  
Author(s):  
Marie-José Côté ◽  
Marie-Claude Tardif ◽  
Allison J. Meldrum

Monilinia fructigena, M. fructicola, M. laxa, and Monilia polystroma each have a different regulatory status. To monitor imported and exported fruit for the presence of quarantined Monilinia or Monilia species, a timely identification method is required. Random amplified polymorphic DNA analysis was used to generate an M. fructigena-specific band that was characterized by sequencing. Using the sequence obtained, primers were designed to amplify bands in the same genomic region of M. fructicola and M. laxa. These bands were also characterized by sequencing. From all three sequences, a multiplex polymerase chain reaction (PCR) method based on a common reverse primer (MO368-5) and three species-specific forward primers (MO368-8R, MO368-10R, and Laxa-R2) was established for the differentiation of the three Monilinia species. The multiplex PCR was tested with additional isolates and consistently produced a 402-bp PCR product for M. fructigena, a 535-bp product for M. fructicola, and a 351-bp product for M. laxa. The method was also used with isolates of the recently characterized Monilia polystroma, and all isolates amplified a 425-bp PCR product. The identification method was shown to amplify a PCR product directly from inoculated apples, and the PCR band produced was specific to the inoculated Monilinia or Monilia species. Furthermore, the multiplex PCR was used to identify Monilinia species on naturally infected stone fruits. The method correctly identified infections by both M. laxa and M. fructicola by successful amplification of corresponding PCR products for each species.


Hydrobiologia ◽  
2020 ◽  
Author(s):  
Alexandra Loveridge ◽  
Cathy H. Lucas ◽  
Kylie A. Pitt

AbstractScyphozoan jellyfish blooms display high interannual variability in terms of timing of appearance and size of the bloom. To understand the causes of this variability, the conditions experienced by the polyps prior to the production of ephyrae in the spring were examined. Polyps reared from planula larvae of Aurelia aurita medusae collected from southern England (50°49′58.8; − 1°05′36.9) were incubated under orthogonal combinations of temperature (4, 7, 10 °C) and duration (2, 4, 6, 8 weeks), representing the range of winter conditions in that region, before experiencing an increase to 13 °C. Timing and success of strobilation were recorded. No significant production of ephyrae was observed in any of the 2- and 4-week incubations, or in any 10 °C incubation. Time to first ephyra release decreased with longer winter incubations, and more ephyrae were produced following longer and colder winter simulations. This experiment indicates that A. aurita requires a minimum period of cooler temperatures to strobilate, and contradicts claims that jellyfish populations will be more prevalent in warming oceans, specifically in the context of warmer winter conditions. Such investigations on population-specific ontogeny highlights the need to examine each life stage separately as well as in the context of its environment.


2019 ◽  
Vol 87 (3) ◽  
pp. 20 ◽  
Author(s):  
Miléna Lengyel ◽  
Nikolett Kállai-Szabó ◽  
Vince Antal ◽  
András József Laki ◽  
István Antal

Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3500
Author(s):  
Michael Sayers ◽  
Karl Bosse ◽  
Gary Fahnenstiel ◽  
Robert Shuchman

Large freshwater lakes provide immense value to the surrounding populations, yet there is limited understanding of how these lakes will respond to climate change and other factors. This study uses satellite remote sensing to estimate annual, lake-wide primary production in 11 of the world’s largest lakes from 2003–2018. These lakes include the five Laurentian Great Lakes, the three African Great Lakes, Lake Baikal, and Great Bear and Great Slave Lakes. Mean annual production in these lakes ranged from under 200 mgC/m2/day to over 1100 mgC/m2/day, and the lakes were placed into one of three distinct groups (oligotrophic, mesotrophic, or eutrophic) based on their level of production. The analysis revealed only three lakes with significant production trends over the study period, with increases in Great Bear Lake (24% increase over the study period) and Great Slave Lake (27%) and a decline in Lake Tanganyika (−16%). These changes appear to be related to climate change, including increasing temperatures and solar radiation and decreasing wind speeds. This study is the first to use consistent methodology to study primary production in the world’s largest lakes, allowing for these novel between-lake comparisons and assessment of inter-annual trends.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2570-2577 ◽  
Author(s):  
John Stagg ◽  
Sandra Pommey ◽  
Nicoletta Eliopoulos ◽  
Jacques Galipeau

AbstractSeveral studies have demonstrated that marrow stromal cells (MSCs) can suppress allogeneic T-cell responses. However, the effect of MSCs on syngeneic immune responses has been largely overlooked. We describe here that primary MSCs derived from C57BL/6 mice behave as conditional antigen-presenting cells (APCs) and can induce antigen-specific protective immunity. Interferon gamma (IFNγ)-treated C57BL/6 MSCs, but not unstimulated MSCs, cocultured with ovalbumin-specific major histocompatibility (MHC) class II-restricted hybridomas in the presence of soluble ovalbumin-induced significant production of interleukin-2 (IL-2) in an antigen dose-dependent manner (P < .005). IFNγ-treated MSCs could further activate in vitro ovalbumin-specific primary transgenic CD4+ T cells. C57BL/6 MSCs, however, were unable to induce antigen cross-presentation via the MHC class I pathway. When syngeneic mice were immunized intraperitoneally with ovalbumin-pulsed IFNγ-treated MSCs, they developed antigen-specific cytotoxic CD8+ T cells and became fully protected (10 of 10 mice) against ovalbumin-expressing E.G7 tumors. Human MSCs were also studied for antigen-presenting functions. IFNγ-treated DR1-positive human MSCs, but not unstimulated human MSCs, induced significant production of IL-2 when cocultured with DR1-restricted influenza-specific humanized T-cell hybridomas in the presence of purified influenza matrix protein 1. Taken together, our data strongly suggest that MSCs behave as conditional APCs in syngeneic immune responses. (Blood. 2006;107:2570-2577)


2021 ◽  
pp. 103-108
Author(s):  
L. Landi ◽  
R.M. De Miccolis Angelini ◽  
S. Pollastro ◽  
D. Abate ◽  
F. Faretra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document