scholarly journals Sustainable adsorption method for the remediation of malachite green dye using nutraceutical industrial fenugreek seed spent

Author(s):  
Syed Noeman Taqui ◽  
Mohan C. S. ◽  
Bibi Ahmadi Khatoon ◽  
Manzoore Elahi M. Soudagar ◽  
T. M. Yunus Khan ◽  
...  

AbstractNutraceutical industrial fenugreek seed spent (NIFGS), a relatively low-cost material abundantly available with nearly negligible toxicity for the bioremediation of malachite green (MG) dye from aqueous media, is reported. Studies on the various parameters affecting the adsorption capacity of NIFGS were carried out to evaluate the kinetics and the equilibrium thermodynamics. All the experiments were designed at about pH 7. The adsorption isotherm model proposed by Langmuir fits better than the Freundlich isotherm model. Kinetic study data confirms the viability of pseudo-second-order model. Calculated thermodynamic factors suggest that the adsorption phenomenon is endothermic, almost instantaneous, and physical in nature.

2021 ◽  
Vol 11 (16) ◽  
pp. 7635
Author(s):  
Syed Noeman Taqui ◽  
Mohan Cs ◽  
Mohammad Shahab Goodarzi ◽  
Mohamed Abdelghany Elkotb ◽  
Bibi Ahmadi Khatoon ◽  
...  

Nutraceutical industrial fenugreek seed spent (NIFGS), a relatively low-cost material abundantly available with little toxicity is used in crystal violet (CV) dye remediation from aqueous media and reported in the present study. To access the adsorption capacity, the factors affecting it are kinetics and the equilibrium thermodynamics. All the experiments were designed at approximately pH 7. The adsorption isotherm model proposed by Langmuir fits better than the Freundlich isotherm model. Kinetic studies data confirm the pseudo-second order model. It is evident from thermodynamic parameter values that the process of adsorption is endothermic, physical and dynamic. The process optimization of independent variables that influence adsorption was carried out using response surface methodology (RSM) through bi-level fractional factorial experimental design (FEED). The analysis of variance (ANOVA) was implemented to investigate the combined effect of parameters influencing adsorption. The possibilities of using dye-adsorbed NIFGS (“sludge”) for the fabrication of the composites using plastic waste are suggested.


2011 ◽  
Vol 8 (2) ◽  
pp. 649-656 ◽  
Author(s):  
R. Jayaraj ◽  
M. Chandra Mohan ◽  
P. Martin Deva Prasath ◽  
T. Hidhayathullah Khan

Malachite green adsorption from an aqueous solution onto activatedEnteromorphacarbon has been studied experimentally using batch adsorption method. Adsorption kinetics and equilibrium were investigated as a function of initial dye concentration, pH, contact time and adsorbent dosage. Kinetics studies indicated that the adsorption followed pseudo second order reaction. Equilibrium data was analyzed using Langmuir and Freundlich isotherm models. The adsorption capacity ofEnteromorphawas found to be 94.74%. On the basis of experimental results and the model parameters, it can be inferred that the carbonaceousEnteromorphais effective for the removal of malachite green from aqueous solution.


2021 ◽  
Author(s):  
John O Ojediran ◽  
Adewumi O. Dada ◽  
Stephen O. Aniyi ◽  
Robinson O. David

Abstract Cationic Malachite green has been identified as a candidate of endocrine disruptive compound found in the environment. In this study, the mechanism and isotherm modeling of effective adsorption of cationic malachite green dye onto acid functionalized maize cob (AFMC) was investigated by batch technique. The operational parameters such as initial concentration (100–600 mg/L); contact time (10–120 mins) and pH (3–10) influenced the removal efficiency and quantity adsorbed. Maximum of 99.3% removal efficiency was obtained at optimum conditions. AFMC physicochemical properties (surface area 1329 m2/g and particle size 300µm<Ф<250µm) enhanced its efficiency. Based on R2 > 0.97 and consistently low values of SSE, X2, HYBRID and MSPD adsorption statistical error functions (ASEF), equilibrium data were best fitted to Freundlich isotherm. Kinetic data were best described by pseudo second-order model with consistent R2 > 0.98 and validated by ASEF. The mechanism of process was better described by intraparticle diffusion. Evidence of adsorption process was confirmed by change in morphology and surface chemistry determined by SEM and FTIR respectively. The performance of AFMC enlisted it as a sustainable and promising low-cost adsorbent from agro-residue for treatment of endocrine disruptive dye polluted water.


2016 ◽  
Vol 875 ◽  
pp. 1-15 ◽  
Author(s):  
Arush Sharma ◽  
Gaurav Sharma ◽  
Amit Kumar ◽  
Zia Mahmood Siddiqi ◽  
Gaurav Sharma

In this study, Cornulacamonacantha stem (CMS) has been used for the preparation of highly competent, ecofriendly and low-cost activated carbon (CMSAC) biosorbent. It was characterized by some instrumental techniques such as Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The biosorbent was evaluated for the eradication of hazardous malachite green (MG) dye from aqueous solution. Batch experiments were conducted to assess the effect of various adsorption parameters such initial dye concentration, sorbent dosage, pH, agitation time and temperature. The results indicated that maximum sorption of MG was occurred at the pH ranged from 10.0 to 12.0. Langmuir, Freundlich and Tempkin isotherms were applied for the interpretation of experimental data and Langmuir model was found to be strongly fitted with higher R2 (0.999). The kinetics studies were examined using pseudo-first-order, pseudo-second-order, Elovich model. The sorption process was described by pseudo-second-order kinetics. The thermodynamic parameters such as energy change (ΔG°), enthalpychange (ΔH°) and entropy change (ΔS°) were found to be-6.21kJ/mol, 46.17 kJ/mol and 172.81 J/mol/K, respectively. The adsorption performance of malachite green dye onto gleaming activated carbon developed from Cornulacamonacantha stem was found to be spontaneous, feasible and endothermic process.


2018 ◽  
Vol 3 (2) ◽  
pp. 127-142 ◽  
Author(s):  
Ismi M. N. Milla ◽  
Mia A. Syahri ◽  
Endang T. Wahyuni ◽  
Roto Roto ◽  
Dwi Siswanta

waste has been modified by sulfonation using sulfuric acid to form its corresponding sulfonated adsorbent and was further used for removing cadmium ion in its aqueous solution. The effect of the styrofoam weight, sulfuric acid concentration, temperature and time on the sulfonation result was evaluated. The prepared adsorbent was characterized by XRD, FTIR, and SEM. The cadmium ion adsorption was conducted by batch technique, where the kinetic parameters were determined. The research results attribute that the sulfonated styrofoam has been successfully prepared, and the highest sulfonation is exhibited by using 18M of the sulfuric acid, at 60 oC for 6 h with 5 g of styrofoam. The cadmium adsorption by the sulfonated styrofoam fits with the pseudo-second-order and the Langmuir isotherm model, while the native styrofoam follows the intraparticle diffusion mechanism and Freundlich isotherm model. The adsorption capacities of the sulfonated and the native styrofoam are 51.6 mg/g and 7.09 mg/g respectively, and their respective adsorption rate are 8.20 10-3 mg. g-1. min-1 and 26.9 10-3 mg.g-1 min-1/2 .


Author(s):  
Yusef Omidi Khaniabadi ◽  
Hassan Basiri ◽  
Heshmatollah Nourmoradi ◽  
Mohammad Javad Mohammadi ◽  
Ahmad Reza Yari ◽  
...  

AbstractIn this study, the sorption of Congo red (CR), as a toxic dye, from aqueous media was investigated using montmorillonite (MMT) as a low-cost adsorbent. The influence of several factors such as contact time, pH, adsorbent dosage, dye content, and ionic strength was investigated on the dye removal. MMT was characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). Different kinetic and isotherm models including pseudo-first and pseudo-second order kinetic and Langmuir and Freundlich were applied to analyze experimental data, respectively. The results showed that the data were well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The optimum conditions for the sorption of CR were achieved over 40 min and at pH=2. According to the results of the present study, MMT can be used as a low-cost, eco-friendly and effective option for the adsorption of CR from aqueous solutions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John O Ojediran ◽  
Adewumi Oluwasogo Dada ◽  
Stephen O Aniyi ◽  
Robinson O. David ◽  
Adejoke D Adewumi

AbstractCationic Malachite green has been identified as a candidate for the endocrine disruptive compound found in the environment. In this study, the mechanism and isotherm modeling of effective adsorption of cationic malachite green dye onto acid-functionalized maize cob (AFMC) was investigated by batch technique. The operational parameters such as initial concentration (100–600 mg/L); contact time (10–120 min) and pH (3–10) influenced the removal efficiency and quantity adsorbed. A maximum of 99.3% removal efficiency was obtained at optimum conditions. AFMC physicochemical properties (surface area 1329 m2/g and particle size 300 μm < Ф < 250 μm) enhanced its efficiency. Based on R2 > 0.97 and consistently low values of adsorption statistical error functions (ASEF), equilibrium data were best fitted to Freundlich isotherm. Kinetic data were best described by a pseudo-second-order model with consistent R2 > 0.98 and validated by ASEF. The mechanism of the process was better described by intraparticle diffusion. Evidence of the adsorption process was confirmed by the change in morphology via Scanning Electron Microscopy (SEM) and surface chemistry by Fourier Transform infrared (FTIR). The performance of AFMC enlisted it as a sustainable and promising low-cost adsorbent from agro-residue for treatment of endocrine disruptive dye polluted water.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
Victoria K. Elmes ◽  
Nichola J. Coleman

Construction and demolition activities generate approximately two thirds of the world’s waste, with concrete-based demolition material accounting for the largest proportion. Primary aggregates are recovered and reused, although the cement-rich fine fraction is underutilised. In this study, single metal batch sorption experiments confirmed that crushed concrete fines (CCF) are an effective sorbent for the maximum exclusion of 45.2 mg g−1 Cd2+, 38.4 mg g−1 Co2+ and 56.0 mg g−1 MoO42− ions from aqueous media. The principal mechanisms of sorption were determined, by scanning electron microscopy of the metal-laden CCF, to be co-precipitation with Ca2+ ions released from the cement to form solubility limiting phases. The removal of Co2+ and MoO42− ions followed a zero-order reaction and that of Cd2+ was best described by a pseudo-second-order model. The Langmuir model provided the most appropriate description of the steady state immobilisation of Cd2+ and Co2+, whereas the removal of MoO42− conformed to the Freundlich isotherm. Long equilibration times (>120 h), loose floc formation and high pH are likely to limit the use of CCF in many conventional wastewater treatment applications; although, these properties could be usefully exploited in reactive barriers for the management of contaminated soils, sediments and groundwater.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2586
Author(s):  
Inas A. Ahmed ◽  
Ahmed H. Ragab ◽  
Mohamed A. Habila ◽  
Taghrid S. Alomar ◽  
Enas H. Aljuhani

In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone—chitosan–alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m2/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH0) was 37.7 KJ mol−1 for CR and 8.71 KJ mol−1 for BG, while the entropy change (ΔS0) was 89.1 J K−1 mol−1 for CR and 79.1 J K−1 mol−1 BG, indicating that the adsorption process was endothermic and spontaneous in nature.


2021 ◽  
Author(s):  
ABDELAZIZ IMGHARN ◽  
Nouh Aarab ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Mohammed Elhoudi ◽  
...  

Abstract The aim of this work is to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate biobeads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and used to remove Orange G dye from water. batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm provided a good fitting of the whole experimental data. The results revealed that the as-prepared tricomposite Alg-PANI@SD, has the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.


Sign in / Sign up

Export Citation Format

Share Document