Differentially expressed genes in sensitive and tolerant rice varieties in response to salt-stress

2011 ◽  
Vol 20 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Awadhesh Pandit ◽  
Vandna Rai ◽  
Tilak R. Sharma ◽  
Prakash C. Sharma ◽  
Nagendra K. Singh
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasmita Rani Das ◽  
Seema Pradhan ◽  
Ajay Parida

AbstractScreening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated ~ 230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress. Separate gene expression profiles for leaf and root tissue revealed the differences in regulatory mechanisms operating in these tissues during exposure to abiotic stress. Several transcription factors were identified and studied for differential expression. 61 differentially expressed genes were found to be common to both tissues under drought and salinity stress and were further validated using qRT-PCR. Transcriptome of P. sumatrense was also used to mine for genic SSR markers relevant to abiotic stress tolerance. This study is first report on a detailed analysis of molecular mechanisms of drought and salinity stress tolerance in a little millet variety. Resources generated in this study can be used as potential candidates for further characterization and to improve abiotic stress tolerance in food crops.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 891 ◽  
Author(s):  
Mobina Ulfat ◽  
Habib-ur-Rehman Athar ◽  
Zaheerud-din Khan ◽  
Hazem M. Kalaji

Salinity is one of the major abiotic stresses prevailing throughout the world that severely limits crop establishment and production. Every crop has an intra-specific genetic variation that enables it to cope with variable environmental conditions. Hence, this genetic variability is a good tool to exploit germplasms in salt-affected areas. Further, the selected cultivars can be effectively used by plant breeders and molecular biologists for the improvement of salinity tolerance. In the present study, it was planned to identify differential expression of genes associated with selective uptake of different ions under salt stress in selected salt-tolerant canola (Brassica napus L.) cultivar. For the purpose, an experiment was carried out to evaluate the growth response of different salt-sensitive and salt-tolerant canola cultivars. Plants were subjected to 200 mM NaCl stress. Canola cultivars—Faisal Canola, DGL, Dunkled, and CON-II—had higher growth than in cvs Cyclone, Ac-EXcel, Legend, and Oscar. Salt-tolerant cultivars were better able to maintain plant water status probably through osmotic adjustment as compared to salt-sensitive cultivars. Although salt stress increased shoot Na+ and shoot Cl− contents in all canola cultivars, salt-tolerant cultivars had a lower accumulation of these toxic nutrients. Similarly, salt stress reduced shoot K+ and Ca2+ contents in all canola cultivars, while salt-tolerant cultivars had a higher accumulation of K+ and Ca2+ in leaves, thereby having greater shoot K+/Na+ and Ca2+/Na+ ratios. Nutrient utilization efficiency decreased significantly in all canola cultivars due to the imposition of salt stress; however, it was greater in salt-tolerant cultivars—Faisal Canola, DGL, and Dunkled. Among four salt-tolerant canola cultivars, cv Dunkled was maximal in physiological attributes, and thus differentially expressed genes (DEGs) were assessed in it by RNA-seq analysis using next-generation sequencing (NGS) techniques. The differentially expressed genes (DEG) in cv Dunkled under salt stress were found to be involved in the regulation of ionic concentration, photosynthesis, antioxidants, and hormonal metabolism. However, the most prominent upregulated DEGs included Na/K transporter, HKT1, potassium transporter, potassium channel, chloride channel, cation exchanger, Ca channel. The RNA-seq data were validated through qRT-PCR. It was thus concluded that genes related to the regulation of ionic concentrate are significantly upregulated and expressed under salt stress, in the cultivar Dunkled.


2017 ◽  
Vol 82 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Hui Li ◽  
Jing Lin ◽  
Qing-Song Yang ◽  
Xiao-Gang Li ◽  
You-Hong Chang

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Wang ◽  
Daofu Cheng ◽  
Chengang Fan ◽  
Cong Zhang ◽  
Chao Zhang ◽  
...  

Background: As Oryza sativa ssp. indica and Oryza sativa ssp. japonica are the two major subspecies of Asian cultivated rice, the adaptative evolution of these varieties in divergent environments is an important topic in both theoretical and practical studies. However, the cell type-specific differentiation between indica and japonica rice varieties in response to divergent habitat environments, which facilitates an understanding of the genetic basis underlying differentiation and environmental adaptation between rice subspecies at the cellular level, is little known.Methods: We analyzed a published single-cell RNA sequencing dataset to explore the differentially expressed genes between indica and japonica rice varieties in each cell type. To estimate the relationship between cell type-specific differentiation and environmental adaptation, we focused on genes in the WRKY, NAC, and BZIP transcription factor families, which are closely related to abiotic stress responses. In addition, we integrated five bulk RNA sequencing datasets obtained under conditions of abiotic stress, including cold, drought and salinity, in this study. Furthermore, we analyzed quiescent center cells in rice root tips based on orthologous markers in Arabidopsis.Results: We found differentially expressed genes between indica and japonica rice varieties with cell type-specific patterns, which were enriched in the pathways related to root development and stress reposes. Some of these genes were members of the WRKY, NAC, and BZIP transcription factor families and were differentially expressed under cold, drought or salinity stress. In addition, LOC_Os01g16810, LOC_Os01g18670, LOC_Os04g52960, and LOC_Os08g09350 may be potential markers of quiescent center cells in rice root tips.Conclusion: These results identified cell type-specific differentially expressed genes between indica-japonica rice varieties that were related to various environmental stresses and provided putative markers of quiescent center cells. This study provides new clues for understanding the development and physiology of plants during the process of adaptative divergence, in addition to identifying potential target genes for the improvement of stress tolerance in rice breeding applications.


2020 ◽  
Vol 145 (3) ◽  
pp. 174-185 ◽  
Author(s):  
Xinyi Chang ◽  
Junli Sun ◽  
Lianling Liu ◽  
Wang He ◽  
Baolong Zhao

Wild jujube (Ziziphus acidojujuba) and cultivated jujube (Ziziphus jujuba) belong to the family Rhamnaceae. Jujubes have marked drought- and salt-tolerant properties. After salt stress, wild jujube seedling growth was inhibited and photosynthetic efficiency was reduced. A bioinformatics approach was used to analyze the transcriptomics data from wild jujube seedlings grown under salt stress, and the genes differentially expressed under the salt stress were identified to provide a theoretical basis for the development and use of wild jujube plantations in salinized soil. The transcriptome sequencing from leaves of wild jujube seedlings was carried out using second-generation sequencing technology. The effects of salt stress on the differential expression of photosynthesis-related genes in wild jujube seedlings were analyzed. Transcriptome sequencing revealed a total of 5269 differentially expressed genes (DEGs), of which 2729 were up-regulated and 2540 were down-regulated. DEGs were mainly enriched with respect to photosynthesis, photosynthetic antenna proteins, glyoxylic acid and dicarboxylic acid metabolism, linolenic acid metabolism, cysteine and methionine metabolism, and porphyrin and chlorophyll metabolism. Among them, the photosynthesis pathway-related DEGs were most highly enriched. Further analysis of porphyrin and chlorophyll synthesis and photosynthesis-related pathways revealed that they were significantly enriched by 97 photosynthesis-related DEGs. The DEGs in the photosynthesis and photosynthetic antenna protein pathways were down-regulated, whereas the DEGs glutamyl-tRNA reductase (HEMA), ferrochelatase (HEMH), and pheophorbide a oxygenase (PAO) in the porphyrin and chlorophyll synthesis pathways were up-regulated, with the remainder being down-regulated. The nuclear gene encoding Rubisco, the key enzyme in the photosynthetic carbon fixation pathway, was also down-regulated. The results showed that the photosynthetic rate of wild jujube seedlings decreased following exposure to salinity stress, an effect that was related to the increased synthesis of 5-aminolevulinic acid and heme, and the up-regulation of expression of a gene encoding a chlorophyll-degrading enzyme, and was related to the down-regulation of gene expression in photosynthesis-related pathways such as light energy capture and carbon fixation. Selection of nine DEGs related to photosynthesis and chlorophyll biosynthesis by quantitative real-time-PCR confirmed that expression changes of these nine DEGs were consistent with the transcriptome sequencing results.


2019 ◽  
Vol 20 (23) ◽  
pp. 5910 ◽  
Author(s):  
Gui Geng ◽  
Chunhua Lv ◽  
Piergiorgio Stevanato ◽  
Renren Li ◽  
Hui Liu ◽  
...  

Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.


2012 ◽  
Vol 5 (6) ◽  
pp. 1403-1405 ◽  
Author(s):  
Hai-Wen Zhang ◽  
Xiao-Wu Pan ◽  
Yong-Chao Li ◽  
Li-Yun Wan ◽  
Xiao-Xiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document