scholarly journals The Role of Vitamin K Status in Cardiovascular Health: Evidence from Observational and Clinical Studies

2017 ◽  
Vol 6 (3) ◽  
pp. 197-205 ◽  
Author(s):  
A. J. van Ballegooijen ◽  
J. W. Beulens
Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2603
Author(s):  
Maristella Donato ◽  
Elisabetta Faggin ◽  
Francesco Cinetto ◽  
Carla Felice ◽  
Maria Giovanna Lupo ◽  
...  

Cardiovascular calcification is the ectopic deposition of calcium-phosphate crystals within the arterial wall and the aortic valve leaflets. This pathological process leads to increased vascular stiffness, reduced arterial elasticity, and aortic valve stenosis, increasing the risk of cardiovascular diseases. Although cardiovascular calcification is an increasing health care burden, to date no medical therapies have been approved for treating or preventing it. Considering the current lack of therapeutic strategies and the increasing prevalence of cardiovascular calcification, the investigation of some nutraceuticals to prevent this pathological condition has become prevalent in recent years. Recent preclinical and clinical studies evaluated the potential anti-calcific role of nutraceuticals (including magnesium, zinc, iron, vitamin K, and phytate) in the progression of vascular calcification, providing evidence for their dietary supplementation, especially in high-risk populations. The present review summarizes the current knowledge and latest advances for nutraceuticals with the most relevant preclinical and clinical data, including magnesium, zinc, iron, vitamin K, and phytate. Their supplementation might be recommended as a cost-effective strategy to avoid nutritional deficiency and to prevent or treat cardiovascular calcification. However, the optimal dose of nutraceuticals has not been identified and large interventional trials are warranted to support their protective effects on cardiovascular disease.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2206
Author(s):  
Alexander Popescu ◽  
Monica German

Recent studies have highlighted the importance of vitamin K2 (VK2) in human health. However, there have been no clinical studies investigating the role of VK2 in the prevention or treatment of Alzheimer’s disease (AD), a debilitating disease for which currently there is no cure. In reviewing basic science research and clinical studies that have connected VK2 to factors involved in AD pathogenesis, we have found a growing body of evidence demonstrating that VK2 has the potential to slow the progression of AD and contribute to its prevention. In our review, we consider the antiapoptotic and antioxidant effects of VK2 and its impact on neuroinflammation, mitochondrial dysfunction, cognition, cardiovascular health, and comorbidities in AD. We also examine the link between dysbiosis and VK2 in the context of the microbiome’s role in AD pathogenesis. Our review is the first to consider the physiological roles of VK2 in the context of AD, and, given the recent shift in AD research toward nonpharmacological interventions, our findings emphasize the timeliness and need for clinical studies involving VK2.


2019 ◽  
Vol 26 (5) ◽  
pp. 765-779 ◽  
Author(s):  
Alexios S. Antonopoulos ◽  
Athina Goliopoulou ◽  
Evangelos Oikonomou ◽  
Sotiris Tsalamandris ◽  
Georgios-Angelos Papamikroulis ◽  
...  

Background: Myocardial redox state is a critical determinant of atrial biology, regulating cardiomyocyte apoptosis, ion channel function, and cardiac hypertrophy/fibrosis and function. Nevertheless, it remains unclear whether the targeting of atrial redox state is a rational therapeutic strategy for atrial fibrillation prevention. Objective: To review the role of atrial redox state and anti-oxidant therapies in atrial fibrillation. Method: Published literature in Medline was searched for experimental and clinical evidence linking myocardial redox state with atrial fibrillation pathogenesis as well as studies looking into the role of redoxtargeting therapies in the prevention of atrial fibrillation. Results: Data from animal models have shown that altered myocardial nitroso-redox balance and NADPH oxidases activity are causally involved in the pathogenesis of atrial fibrillation. Similarly experimental animal data supports that increased reactive oxygen / nitrogen species formation in the atrial tissue is associated with altered electrophysiological properties of atrial myocytes and electrical remodeling, favoring atrial fibrillation development. In humans, randomized clinical studies using redox-related therapeutic approaches (e.g. statins or antioxidant agents) have not documented any benefits in the prevention of atrial fibrillation development (mainly post-operative atrial fibrillation risk). Conclusion: Despite strong experimental and translational data supporting the role of atrial redox state in atrial fibrillation pathogenesis, such mechanistic evidence has not been translated to clinical benefits in atrial fibrillation risk in randomized clinical studies using redox-related therapies.


Author(s):  
Clare Stradling ◽  
Mash Hamid ◽  
Katherine Fisher ◽  
Shahrad Taheri ◽  
G. Thomas

2021 ◽  
Vol 14 ◽  
Author(s):  
Mohammad Najim Uddin ◽  
Mohammad Injamul Hoq ◽  
Israt Jahan ◽  
Shafayet Ahmed Siddiqui ◽  
Chayan Dhar Clinton ◽  
...  

: Thymoquinone (TQ) is one of the leading phytochemicals, which is abundantly found in Nigella sativa L. seeds. TQ exhibited various biological effects such as antioxidant, anti-inflammatory, antimicrobial, and anti-tumoral in several pre-clinical studies. Parkinson's disease (PD) is a long-term neurodegenerative disease with movement difficulties, and the common feature of neurodegeneration in PD patients is caused by dopaminergic neural damage in the substantia nigra pars compacta. The neuroprotective activity of TQ has been studied in various neurological disorders. TQ-mediated neuroprotection against PD yet to be reported in a single frame; therefore, this review is intended to narrate the potentiality of TQ in the therapy of PD. TQ has been shown to protect against neurotoxins via amelioration of neuroinflammation, oxidative stress, apoptosis, thereby protects neurodegeneration in PD models. TQ could be an emerging therapeutic intervention in PD management, but mechanistic studies have been remained to be investigated to clarify its neuroprotective role.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1045
Author(s):  
Marta B. Lopes ◽  
Eduarda P. Martins ◽  
Susana Vinga ◽  
Bruno M. Costa

Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 737
Author(s):  
Marko Kumric ◽  
Josip A. Borovac ◽  
Tina Ticinovic Kurir ◽  
Dinko Martinovic ◽  
Ivan Frka Separovic ◽  
...  

Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein, emerged as an important inhibitor of both intimal and medial vascular calcification. The functionality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation. Depending on the above-noted modifications, various species of MGP may exist in circulation, each with their respective level of functionality. Emerging data suggest that dysfunctional species of MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers of microvascular health, and assist in clinical decision making with regard to initiation of vitamin K supplementation. Hence, in this review we summarized the current knowledge with respect to the role of MGP in the complex network of vascular calcification with concurrent inferences to CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant implications to coronary plaque stability.


2021 ◽  
Vol 5 ◽  
pp. S20
Author(s):  
Douglas William Cirino ◽  
Leandro Reverberi Tambosi ◽  
Simone Rodrigues de Freitas ◽  
Thais Mauad ◽  
Jean Paul Metzger

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 933
Author(s):  
Andrea Gila-Diaz ◽  
Gloria Herranz Carrillo ◽  
Pratibha Singh ◽  
David Ramiro-Cortijo

Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.


Sign in / Sign up

Export Citation Format

Share Document