scholarly journals The Emerging Role of Nutraceuticals in Cardiovascular Calcification: Evidence from Preclinical and Clinical Studies

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2603
Author(s):  
Maristella Donato ◽  
Elisabetta Faggin ◽  
Francesco Cinetto ◽  
Carla Felice ◽  
Maria Giovanna Lupo ◽  
...  

Cardiovascular calcification is the ectopic deposition of calcium-phosphate crystals within the arterial wall and the aortic valve leaflets. This pathological process leads to increased vascular stiffness, reduced arterial elasticity, and aortic valve stenosis, increasing the risk of cardiovascular diseases. Although cardiovascular calcification is an increasing health care burden, to date no medical therapies have been approved for treating or preventing it. Considering the current lack of therapeutic strategies and the increasing prevalence of cardiovascular calcification, the investigation of some nutraceuticals to prevent this pathological condition has become prevalent in recent years. Recent preclinical and clinical studies evaluated the potential anti-calcific role of nutraceuticals (including magnesium, zinc, iron, vitamin K, and phytate) in the progression of vascular calcification, providing evidence for their dietary supplementation, especially in high-risk populations. The present review summarizes the current knowledge and latest advances for nutraceuticals with the most relevant preclinical and clinical data, including magnesium, zinc, iron, vitamin K, and phytate. Their supplementation might be recommended as a cost-effective strategy to avoid nutritional deficiency and to prevent or treat cardiovascular calcification. However, the optimal dose of nutraceuticals has not been identified and large interventional trials are warranted to support their protective effects on cardiovascular disease.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Allan Tran ◽  
Charlotte Scholtes ◽  
Mario Songane ◽  
Claudia Champagne ◽  
Luc Galarneau ◽  
...  

AbstractThe estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.


2019 ◽  
Vol 20 (9) ◽  
pp. 2142
Author(s):  
Lukas Nollet ◽  
Matthias Van Gils ◽  
Shana Verschuere ◽  
Olivier Vanakker

Ectopic mineralization disorders comprise a broad spectrum of inherited or acquired diseases characterized by aberrant deposition of calcium crystals in multiple organs, such as the skin, eyes, kidneys, and blood vessels. Although the precise mechanisms leading to ectopic calcification are still incompletely known to date, various molecular targets leading to a disturbed balance between pro- and anti-mineralizing pathways have been identified in recent years. Vitamin K and its related compounds, mainly those post-translationally activated by vitamin K-dependent carboxylation, may play an important role in the pathogenesis of ectopic mineralization as has been demonstrated in studies on rare Mendelian diseases, but also on highly prevalent disorders, like vascular calcification. This narrative review compiles and summarizes the current knowledge regarding the role of vitamin K, its metabolism, and associated compounds in the pathophysiology of both monogenic ectopic mineralization disorders, like pseudoxanthoma elasticum or Keutel syndrome, as well as acquired multifactorial diseases, like chronic kidney disease. Clinical and molecular aspects of the various disorders are discussed according to the state-of-the-art, followed by a comprehensive literature review regarding the role of vitamin K in molecular pathophysiology and as a therapeutic target in both human and animal models of ectopic mineralization disorders.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1591 ◽  
Author(s):  
Sarai Quirante-Moya ◽  
Paula García-Ibañez ◽  
Francisco Quirante-Moya ◽  
Débora Villaño ◽  
Diego A. Moreno

Brassica vegetables and their components, the glucosinolates, have been suggested as good candidates as dietary coadjutants to improve health in non-communicable diseases (NCDs). Different preclinical and clinical studies have been performed in the last decade; however, some concerns have been posed on the lack of established and standardized protocols. The different concentration of bioactive compounds used, time of intervention or sample size, and the lack of blinding are some factors that may influence the studies’ outcomes. This review aims to analyze the critical points of the studies performed with Brassica-related biomolecules and propose some bases for future trials in order to avoid biases.


2020 ◽  
Vol 27 (22) ◽  
pp. 3657-3664 ◽  
Author(s):  
Min Shi ◽  
Liang Ma ◽  
Ping Fu

Accumulating evidences indicated that obesity and metabolic syndrome were independent risk factors for the development and progression of kidney diseases. Apart from inflammation, lipotoxicity, and hemodynamic factors, adipokines have been proposed to play crucial roles in the relationship between kidney diseases and metabolic disorders. As one of the key adipokines, fatty acid binding protein 4 (FABP4), which is mainly expressed in adipocytes and macrophages, has recently been shown to be associated with renal dysfunction and kidney damage. Both clinical and experimental studies have proposed circulating FABP4 as a novel predictor for renal injuries, and it might also be a predictor for cardiovascular events in patients with end stage renal disease (ESRD). FABP4 has also been detected in the glomerular cells and epithelial tubular cells in mouse and human kidneys, and the expression of FABP4 in these cells has been involved in the pathogenesis of kidney diseases. In addition, experimental studies suggested that inhibition of FABP4 had protective effects on renal damage. Here, we reviewed current knowledge regarding the role of FABP4 in pathophysiological insights as well as its potential function as a predictor and therapeutic target for kidney diseases.


CNS Spectrums ◽  
2020 ◽  
pp. 1-6
Author(s):  
Funda Akkus ◽  
Sylvia Terbeck ◽  
Connor J. Haggarty ◽  
Valerie Treyer ◽  
Janan J. Dietrich ◽  
...  

Abstract This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 126 ◽  
Author(s):  
Israr Khan ◽  
Naeem Ullah ◽  
Lajia Zha ◽  
Yanrui Bai ◽  
Ashiq Khan ◽  
...  

Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.


2013 ◽  
Vol 110 (8) ◽  
pp. 1357-1368 ◽  
Author(s):  
Joline W. J. Beulens ◽  
Sarah L. Booth ◽  
Ellen G. H. M. van den Heuvel ◽  
Elisabeth Stoecklin ◽  
Athanasia Baka ◽  
...  

Recent reports have attributed the potential health benefits of vitamin K beyond its function to activate hepatic coagulation factors. Moreover, several studies have suggested that menaquinones, also known as vitamin K2, may be more effective in activating extra-hepatic vitamin K-dependent proteins than phylloquinone, also known as vitamin K1. Nevertheless, present dietary reference values (DRV) for vitamin K are exclusively based on phylloquinone, and its function in coagulation. The present review describes the current knowledge on menaquinones based on the following criteria for setting DRV: optimal dietary intake; nutrient amount required to prevent deficiency, maintain optimal body stores and/or prevent chronic disease; factors influencing requirements such as absorption, metabolism, age and sex. Dietary intake of menaquinones accounts for up to 25 % of total vitamin K intake and contributes to the biological functions of vitamin K. However, menaquinones are different from phylloquinone with respect to their chemical structure and pharmacokinetics, which affects bioavailability, metabolism and perhaps impact on health outcomes. There are significant gaps in the current knowledge on menaquinones based on the criteria for setting DRV. Therefore, we conclude that further investigations are needed to establish how differences among the vitamin K forms may influence tissue specificities and their role in human health. However, there is merit for considering both menaquinones and phylloquinone when developing future recommendations for vitamin K intake.


Sign in / Sign up

Export Citation Format

Share Document