Graphdiyne: a Highly Sensitive Material for ppb-Level NO2 Gas Sensing at Room Temperature

Author(s):  
Peipei Li ◽  
Jia Yu ◽  
Changyan Cao ◽  
Weiguo Song
Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3815
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Joel Ljunggren ◽  
Håkan Olin

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au–ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.


2019 ◽  
Vol 288 ◽  
pp. 625-633 ◽  
Author(s):  
Hwan-Seok Jeong ◽  
Min-Jae Park ◽  
Soo-Hun Kwon ◽  
Hyo-Jun Joo ◽  
Hyuck-In Kwon

2007 ◽  
Vol 1032 ◽  
Author(s):  
Seon Oh Hwang ◽  
Chang Hyun Kim ◽  
Yoon Myung ◽  
Seong-Hun Park ◽  
Jeunghee Park ◽  
...  

AbstractVertically-aligned Mn (10%)-doped Fe3O4 (Fe2.7Mn0.3O4) nanowire arrays were produced by the reduction/substitution of pre-grown Fe2O3 nanowires. These nanowires were ferromagnetic with a Verwey temperature of 129 K. X-ray magnetic circular dichroism measurements revealed that the Mn2+ ions preferentially occupy the tetrahedral sites, substituting for the Fe3+ ions. We observed that the Mn substitution decreases the magnetization, but increases the electrical conductivity. We developed highly sensitive gas sensors using these nanowire arrays, operating at room temperature, whose sensitivity showed a correlation with their bond strength of diatomic/triatomic molecules. Based on the fact that the sensitivity was highest toward water vapor, an excellent-performance humidity sensor was fabricated.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6475
Author(s):  
Jiahui Guo ◽  
Weiwei Li ◽  
Xuanliang Zhao ◽  
Haowen Hu ◽  
Min Wang ◽  
...  

Semiconducting metal oxides can detect low concentrations of NO2 and other toxic gases, which have been widely investigated in the field of gas sensors. However, most studies on the gas sensing properties of these materials are carried out at high temperatures. In this work, Hollow SnO2 nanofibers were successfully synthesized by electrospinning and calcination, followed by surface modification using ZnO to improve the sensitivity of the SnO2 nanofibers sensor to NO2 gas. The gas sensing behavior of SnO2/ZnO sensors was then investigated at room temperature (~20 °C). The results showed that SnO2/ZnO nanocomposites exhibited high sensitivity and selectivity to 0.5 ppm of NO2 gas with a response value of 336%, which was much higher than that of pure SnO2 (13%). In addition to the increase in the specific surface area of SnO2/ZnO-3 compared with pure SnO2, it also had a positive impact on the detection sensitivity. This increase was attributed to the heterojunction effect and the selective NO2 physisorption sensing mechanism of SnO2/ZnO nanocomposites. In addition, patterned electrodes of silver paste were printed on different flexible substrates, such as paper, polyethylene terephthalate and polydimethylsiloxane using a facile screen-printing process. Silver electrodes were integrated with SnO2/ZnO into a flexible wearable sensor array, which could detect 0.1 ppm NO2 gas after 10,000 bending cycles. The findings of this study therefore open a general approach for the fabrication of flexible devices for gas detection applications.


2020 ◽  
Vol 65 ◽  
pp. 145-155
Author(s):  
Hadi Riyahi Madvar ◽  
Zoheir Kordrostami ◽  
Samaneh Hamedi

A resistive ethanol gas sensor with a high sensitivity has been proposed. The fabricated gas sensor has a very promising response and recovery at room temperature. The proposed sensor has been fabricated by depositing sensitive nanostructured material on printed circuit board interdigitated electrodes. As the sensitive material, ZnO nanorods of high uniformity have been synthesized by hydrothermal method and then decorated by PbS nanoparticles. The synthesized decorated nanorods were characterized by X-ray diffraction and scanning electron microscope which confirmed the formation of the desired nanostructures. The ethanol gas sensing properties of the ZnO nanorods decorated with PdS nanoparticles was measured in a test chamber. The minimum ethanol concentration detected by the sensor has been 10 ppm. The results showed the higher sensitivity of the proposed sensor to the ethanol at room temperature compared to similar works.


2019 ◽  
Vol 7 (38) ◽  
pp. 11834-11844 ◽  
Author(s):  
Shun Han ◽  
Xiaoling Huang ◽  
Mingzhi Fang ◽  
Weiguo Zhao ◽  
Shijie Xu ◽  
...  

Room-temperature-fabricated amorphous Ga2O3 is an inexpensive and highly sensitive material for high-performance solar-blind ultraviolet (UV) (220–280 nm) detectors, which are extremely useful given the widespread use of solar-blind UV photoelectronic technology.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5993-6001
Author(s):  
Bin Wang ◽  
Xiaolin Wang ◽  
ZhiJiang Guo ◽  
Shijie Gai ◽  
Yong Li ◽  
...  

Highly sensitive gas sensing materials are of great importance for environmental pollution monitoring.


2019 ◽  
Vol 1 (5) ◽  
pp. 2009-2017 ◽  
Author(s):  
E. Petromichelaki ◽  
E. Gagaoudakis ◽  
K. Moschovis ◽  
L. Tsetseris ◽  
T. D. Anthopoulos ◽  
...  

The fundamental development of the design of novel self-powered ozone sensing elements, operating at room temperature, based on p-type metal oxides paves the way to a new class of low cost, highly promising gas sensing devices.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 12 ◽  
Author(s):  
Ada Fort ◽  
Enza Panzardi ◽  
Ammar Al-Hamry ◽  
Valerio Vignoli ◽  
Marco Mugnaini ◽  
...  

The aim of this work is to investigate the gas sensing performance of single wall carbon nanotubes (SWCNTs)-based conductive sensors operating at low–medium temperatures (<250 °C). The investigated sensing films consists of an SWCNT network obtained by drop-casting a SWCNT suspension. Starting from this base preparation, different sensing devices were obtained by decorating the SWCNT network with materials suitable for enhancing the sensitivity toward the target gas. In particular, in this paper, nano-particles of gold and of TiO2 were used. In the paper, the performance of the different sensing devices, in terms of response time, sensitivity toward NO2 and cross-sensitivity to O2, CO and water vapor, were assessed and discussed. Sensors based on decorated SWCNT films showed high performance; in particular, the decoration with Au nano-particles allows for a large enhancement of sensitivity (reaching 10%/1 ppm at 240 °C) and a large reduction of response time. On the other hand, the addition of TiO2 nanoparticles leads to a satisfactory improvement of the sensitivity as well as a significant reduction of the response time at moderate temperatures (down to 200 °C). Finally, the suitability of using Au decorated SWCNTs-based sensors for room temperature sensing is demonstrated.


2019 ◽  
Vol 6 (1) ◽  
pp. 176-183 ◽  
Author(s):  
Jing Wang ◽  
Mingying Yu ◽  
Xian Li ◽  
Yi Xia

PSS-functionalized ZnO nanowires exhibited a highly sensitive, fast, reversible and stable optoelectronic response to NO2 under UV illumination.


Sign in / Sign up

Export Citation Format

Share Document