scholarly journals Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review

2020 ◽  
Vol 50 (12) ◽  
pp. 2083-2110
Author(s):  
Bastien Bontemps ◽  
Fabrice Vercruyssen ◽  
Mathieu Gruet ◽  
Julien Louis

AbstractDownhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings of this review show that DR may have an impact on exercise performance by altering muscle structure and function due to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise duration, and running speed were − 12% (− 15%; − 10%), 40 min (30 min; 45 min) and 11.3 km h−1 (9.8 km h−1; 12.9 km h−1), respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, and adaptive strategies to DR.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marianna Török ◽  
Petra Merkely ◽  
Anna Monori-Kiss ◽  
Eszter Mária Horváth ◽  
Réka Eszter Sziva ◽  
...  

Abstract Background We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. Methods Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. Results The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. Conclusions Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.


2017 ◽  
Vol 12 (8) ◽  
pp. 1078-1084 ◽  
Author(s):  
Jessica Hill ◽  
Glyn Howatson ◽  
Ken van Someren ◽  
David Gaze ◽  
Hayley Legg ◽  
...  

Compression garments are frequently used to facilitate recovery from strenuous exercise.Purpose:To identify the effects of 2 different grades of compression garment on recovery indices after strenuous exercise.Methods:Forty-five recreationally active participants (n = 26 male and n = 19 female) completed an eccentric-exercise protocol consisting of 100 drop jumps, after which they were matched for body mass and randomly but equally assigned to a high-compression pressure (HI) group, a low-compression pressure (LOW) group, or a sham ultrasound group (SHAM). Participants in the HI and LOW groups wore the garments for 72 h postexercise; participants in the SHAM group received a single treatment of 10-min sham ultrasound. Measures of perceived muscle soreness, maximal voluntary contraction (MVC), countermovement-jump height (CMJ), creatine kinase (CK), C-reactive protein (CRP), and myoglobin (Mb) were assessed before the exercise protocol and again at 1, 24, 48, and 72 h postexercise. Data were analyzed using a repeated-measures ANOVA.Results:Recovery of MVC and CMJ was significantly improved with the HI compression garment (P < .05). A significant time-by-treatment interaction was also observed for jump height at 24 h postexercise (P < .05). No significant differences were observed for parameters of soreness and plasma CK, CRP, and Mb.Conclusions:The pressures exerted by a compression garment affect recovery after exercise-induced muscle damage, with higher pressure improving recovery of muscle function.


2014 ◽  
Vol 9 (6) ◽  
pp. 985-992 ◽  
Author(s):  
Daniel H. Serravite ◽  
Arlette Perry ◽  
Kevin A. Jacobs ◽  
Jose A. Adams ◽  
Kysha Harriell ◽  
...  

Purpose:To examine the effects of whole-body periodic acceleration (pGz) on exercise-induced-muscle-damage (EIMD) -related symptoms induced by unaccustomed eccentric arm exercise.Methods:Seventeen active young men (23.4 ± 4.6 y) made 6 visits to the research facility over a 2-wk period. On day 1, subjects performed a 1-repetition-maximum (1RM) elbowflexion test and were randomly assigned to the pGz (n = 8) or control group (n = 9). Criterion measurements were taken on day 2, before and immediately after performance of the eccentric-exercise protocol (10 sets, 10 repetitions using 120% 1RM) and after the recovery period. During subsequent sessions (24, 48, 72, and 96 h) these data were collected before pGz or passive recovery. Measurements included isometric strength (maximal voluntary contraction [MVC]), blood markers (creatine kinase, myoglobin, IL-6, TNF-α, TBARS, PGF2α, protein carbonyls, uric acid, and nitrites), soreness, pain, circumference, and range of motion (ROM).Results:Significantly higher MVC values were seen for pGz throughout the recovery period. Within-group differences were seen in myoglobin, IL-6, IL-10, protein carbonyls, soreness, pain, circumference, and ROM showing small negative responses and rapid recovery for the pGz condition.Conclusion:Our results demonstrate that pGz can be an effective tool for the reduction of EIMD and may contribute to the training-adaptation cycle by speeding up the recovery of the body due to its performance-loss-lessening effect.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 127 ◽  
Author(s):  
Takuji Kawamura ◽  
Katsuhiko Suzuki ◽  
Masaki Takahashi ◽  
Miki Tomari ◽  
Reira Hara ◽  
...  

The purpose of this study was to investigate the involvement of neutrophil dynamics and function in exercise-induced muscle damage (EIMD) and delayed-onset muscle soreness (DOMS), and the effect of molecular hydrogen (H2) intake on these parameters. Nine healthy and active young men performed H2 and placebo bath trial in a crossover design. They carried out downhill running (−8% slope) for 30 min at a speed corresponding to 75~85% of peak oxygen uptake (VO2peak). Subsequently, they repeated bathing for 20 min per day for one week. Degree of muscle soreness (visual analogue scale: VAS), peripheral leukocyte counts, neutrophil dynamics and function, muscle damage, and inflammation markers were measured. Plasma interleukin (IL)-6 concentration was significantly correlated with peripheral neutrophil count, VAS, and serum creatine kinase activity, respectively, after downhill running. Peripheral neutrophil count and serum myoglobin concentration were also significantly correlated. Conversely, there were no effects of H2 bath. These results suggest that IL-6 may be involved in the mobilization of neutrophils into the peripheral blood and subsequent EIMD and DOMS after downhill running; however, it is not likely that H2 bath is effective for the inflammatory process that was centered on neutrophils after downhill running.


Author(s):  
Nicola Giovanelli ◽  
Mirco Floreani ◽  
Filippo Vaccari ◽  
Stefano Lazzer

Downhill running has an important effect on performance in trail running competitions, but it is less studied than uphill running. The purpose of this study was to investigate the cardiorespiratory response during 15 minutes of downhill running (DR) and to evaluate the neuromuscular consequences in a group of trail runners. Before and after a 15-min DR trial (slope: −25%) at ~60% of maximal oxygen consumption (V̇O2max), we evaluated maximal voluntary contraction torque (MVCt) and muscle contractility in a group of seventeen trail running athletes. Additionally, during the DR trial, we measured V̇O2 and heart rate (HR). V̇O2 and HR increased as a function of time, reaching +19.8 ± 15.9% (p < 0.001; ES: 0.49, medium) and +15.3 ± 9.9% (p < 0.001; ES: 0.55, large), respectively, in the last minute of DR. Post-exercise, the MVCt decreased (−22.2 ± 12.0%; p < 0.001; ES = 0.55, large) with respect to the pre-exercise value. All the parameters related to muscle contractility were impaired after DR: the torque evoked by a potentiated high frequency doublet decreased (−28.5 ± 12.7%; p < 0.001; ES: 0.61, large), as did the torque response from the single-pulse stimulation (St, −41.6 ± 13.6%; p < 0.001; ES: 0.70, large) and the M-wave (−11.8 ± 12.1%; p < 0.001; ES: 0.22, small). We found that after 15 min of DR, athletes had a decreased MVCt, which was ascribed mainly to peripheral rather than central alterations. Additionally, during low-intensity DR exercise, muscle fatigue and exercise-induced muscle damage may contribute to the development of O2 and HR drift.


2021 ◽  
Vol 19 (4) ◽  
pp. 249-257
Author(s):  
Zhi-fang Zhang ◽  
Yu-lei Liang ◽  
Tian-yuan Lü ◽  
Zheng-xian Shen ◽  
Xin Wang ◽  
...  

2020 ◽  
Vol 92 (6) ◽  
pp. 977-984
Author(s):  
Mayya V. Kulikova ◽  
Albert B. Kulikov ◽  
Alexey E. Kuz’min ◽  
Anton L. Maximov

AbstractFor previously studied Fischer–Tropsch nanosized Fe catalyst slurries, polymer compounds with or without polyconjugating structures are used as precursors to form the catalyst nanomatrix in situ, and several catalytic experiments and X-ray diffraction and atomic force microscopy measurements are performed. The important and different roles of the paraffin molecules in the slurry medium in the formation and function of composite catalysts with the two types of aforementioned polymer matrices are revealed. In the case of the polyconjugated polymers, the alkanes in the medium are “weakly” coordinated with the metal-polymer composites, which does not affect the effectiveness of the polyconjugated polymers. Otherwise, alkane molecules form a “tight” surface layer around the composite particles, which create transport complications for the reagents and products of Fischer-Tropsch synthesis and, in some cases, can change the course of the in situ catalyst formation.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 553
Author(s):  
Elizabeth de Koster ◽  
Taban Sulaiman ◽  
Jaap Hamming ◽  
Abbey Schepers ◽  
Marieke Snel ◽  
...  

Changing insights regarding radioiodine (I-131) administration in differentiated thyroid carcinoma (DTC) stir up discussions on the utility of pre-ablation diagnostic scintigraphy (DxWBS). Our retrospective study qualitatively and semi-quantitatively assessed posttherapy I-131 whole-body scintigraphy (TxWBS) data for thyroid remnant size and metastasis. Findings were associated with initial treatment success after nine months, as well as clinical, histopathological, and surgical parameters. Possible management changes were addressed. A thyroid remnant was reported in 89 of 97 (92%) patients, suspicion of lymph node metastasis in 26 (27%) and distant metastasis in 6 (6%). Surgery with oncological intent and surgery by two dedicated thyroid surgeons were independently associated with a smaller remnant. Surgery at a community hospital, aggressive tumor histopathology, histopathological lymph node metastasis (pN1) and suspicion of new lymph node metastasis on TxWBS were independently associated with an unsuccessful treatment. Thyroid remnant size was unrelated to treatment success. All 13 pN1 patients with suspected in situ lymph node metastases on TxWBS had an unsuccessful treatment, opposite 19/31 (61%) pN1 patients without (p = 0.009). Pre-ablative knowledge of these TxWBS findings had likely influenced management in 48 (50%) patients. Additional pre-ablative diagnostics could optimize patient-tailored I-131 administration. DxWBS should be considered, especially in patients with pN1 stage or suspected in situ lymph node metastasis. Dependent on local surgical expertise, DxWBS is not recommended to evaluate thyroid remnant size.


2020 ◽  
Vol 22 (1) ◽  
pp. 91
Author(s):  
Vanina Romanello

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document