Sodium chloride-induced spatial and temporal manifestation in membrane stability index and protein profiles of contrasting wheat (Triticum aestivum L.) genotypes under salt stress

2015 ◽  
Vol 20 (3) ◽  
pp. 271-275 ◽  
Author(s):  
Manoj Kumar ◽  
Muzaffar Hasan ◽  
Ajay Arora ◽  
Kishor Gaikwad ◽  
Suresh Kumar ◽  
...  
2011 ◽  
Vol 57 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
W.M. Bhutta

Soil salinity and semi-arid and arid climate of Pakistan is a major constraint in agriculture and predominantly in foodstuff production. It limits crop yield and use of land previously uncultivated. Wheat is moderately salt tolerant. A great variation was observed between and within the cultivars (genotypes: S-24 salt tolerant and DN-27 salt sensitive) in relationship to the choice of salinity level (control and treatments: in increment of 25 mol/m<sup>3</sup> NaCl/day to a final level of 80 and 160 mol/m<sup>3 </sup>NaCl into the nutrient solution) that will be used for screening purpose. Relative water content (RWC), membrane stability index and the activities of some antioxidant enzymes were determined after 20 and 40 days of salt stress exposure. As a result of activity enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase increased in S-24 with the increase of salt stress, while in DN-27 all the enzymes showed constant activity at all the stress levels. Meanwhile, relative water content and membrane stability index decrease the value as well as they increases the stress levels. It can be concluded that all three antioxidant enzymes were limiting factors for these genotypes and these reasons also led to the salt sensitivity in DN-27. Different selection methods should be applied to improve different traits in different conditions in wheat.


2011 ◽  
Vol 39 (1) ◽  
pp. 165 ◽  
Author(s):  
Ezatollah ESFANDIARI ◽  
Vaghef ENAYATI ◽  
Amin ABBASI

The effects of salt stress on the activity of antioxidative enzymes, some oxidative stress indices and Na+ and K+ content were studied in leaves of two durum wheat cultivars, Egypt 449 (salt-tolerant) and Syria 371 (salt-sensitive), grown under control (nutrient solution) or salt stress (nutrient solution containing 200 mM NaCl) conditions. Leaves of control and salt-stressed plants were harvested from 10 days old plants beyond salt treatment. The results showed significant increase for activities of antioxidant enzymes such as ascorbate peroxidase (APX) and guaiacol peroxidase (GPX), in Egypt 449 under salinity. At the same time, in cultivar Egypt 449, activity of SOD and CAT were not changed. Meanwhile, under salinity condition the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and GPX in cultivar Syria 371 was lower than control. There was no significant difference between salinity situation and control ones regarding APX activity. Salt stress elevated the amounts of malondialdehyde (MDA) in both cultivars. However, the increasing rate in Syria 371 was more than (four times) that of Egypt 449. Membrane stability index (MSI) of both cultivars negatively influenced by salinity. This negative impact on Syria 371 was highlighted than on Egypt 449. Hydrogen peroxide (H2O2) content of salinity faced Syria 371 was higher than control. Both cultivars displayed increasing and decreasing trend for Na+ and K+ content, respectively. Moreover, K+/Na+ ratio was decreased in both cultivars due to salinity. The studied parameters elucidated that salt resistance of Egypt 449 might be due to increased activity of antioxidant enzymes, low lipid peroxidation, assumingly lower changes in membrane stability index and avoidance of Na+ absorption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zebus Sehar ◽  
Noushina Iqbal ◽  
M. Iqbal R. Khan ◽  
Asim Masood ◽  
Md. Tabish Rehman ◽  
...  

AbstractEthylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L−1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.


2017 ◽  
Vol 9 (2) ◽  
pp. 1036-1041 ◽  
Author(s):  
Priyanka Kumari ◽  
H. K. Jaiswal

Cold stress at seedling stage is a major constraint in boro rice production. Nine boro rice lines were crossed in diallel fashion excluding reciprocals to obtain 36 crosses. All the 36 crosses along with parents were grown in nursery in three seasons (boro-2014, kharif-2015 and boro-2015). Performance of seedlings for survival per cent, chlorophyll content, relative water content, membrane stability index was recorded just before transplanting in all the three seasons. Scoring for cold tolerance was done in both boro seasons. Gautam showed highest survival rate over three seasons. Among crosses, IR 64 x Krishna Hamsa showed highest survival (84%) in boro-2014, MTU 1010 x Jaya (86.33%) in boro-2015 and MTU 1010 x Krishna Hamsa (95.67%) in kharif-2015. Jaya x Krishna Hamsa was most cold tolerant cross over both boro seasons. Significant positive correlation was observed among survival per cent, chlorophyll content, relative water content and membrane stability index over seasons.


Sign in / Sign up

Export Citation Format

Share Document