scholarly journals Nano-/Micro-confined Water in Graphene Hydrogel as Superadsorbents for Water Purification

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiran Sun ◽  
Fei Yu ◽  
Cong Li ◽  
Xiaohu Dai ◽  
Jie Ma

AbstractConfined water has been proven to be of great importance due to its pervasiveness and contribution to life and many fields of scientific research. However, the control and characterization of confined water are a challenge. Herein, a confined space is constructed by flexibly changing the pH of a graphene oxide dispersion under the self-assembly process of a graphene hydrogel (GH), and the confined space is adjusted with variation from 10.04 to 3.52 nm. Confined water content in GH increases when the pore diameter of the confined space decreases; the corresponding adsorption capacity increases from 243.04 to 442.91 mg g−1. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy and Raman spectroscopy are utilized to analyze the hydrogen bonding structure qualitatively and quantitatively, and correlation analysis reveals that the improvement in the adsorption capacity is caused by incomplete hydrogen bonding in the confined water. Further, confined water is assembled into four typical porous commercial adsorbents, and a remarkable enhancement of the adsorption capacity is achieved. This research demonstrates the application potential for the extraordinary properties of confined water and has implications for the development of highly effective confined water-modified adsorbents.

CrystEngComm ◽  
2011 ◽  
Vol 13 (19) ◽  
pp. 5783 ◽  
Author(s):  
Xiuhua Wang ◽  
Sufan Wang ◽  
Li Liu ◽  
Mingwang Shao ◽  
Shifeng Li

2002 ◽  
Vol 4 (7) ◽  
pp. 1179-1182 ◽  
Author(s):  
Zhiqiang Shi ◽  
Yuliang Li ◽  
Haofei Gong ◽  
Minghua Liu ◽  
Shengxiong Xiao ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jeremy R. Wolf

The syntheses and characterization of three noncentrosymmetric main chain hydrogen bonded macromolecules which incorporate aniline, alkanoic acid, and alkanol hydrogen bond donor units are reported. These macromolecules participate in weak intermolecular hydrogen bonding as demonstrated using attenuated total reflectance (ATR) FTIR. The phase transitions of these macromolecules depend on the identity of the hydrogen bond donor.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


2016 ◽  
Vol 1133 ◽  
pp. 547-551 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Azmi Mohd Shariff ◽  
Sami Ullah ◽  
Nadia Riaz ◽  
...  

The present work aims at a better understanding of the influences of the intercalated mono-, di- and triethanolamines on the characteristics and CO2 adsorption ability of sodium form of bentonite (Na-bentonite). The results revealed that the molar mass of intercalated amines significantly influenced the structural and surface properties as well as the CO2 adsorption capacity of Na-bentonite. In this respect, a stepwise increase in the d-spacing of Na-bentonite with the molar mass of amine was recorded by XRD technique. However, an inverse effect of the molar mass of amine on the surface area was confirmed by BET method. CO2 adsorption experiments on amine-bentonite hybrid adsorbents showed that the CO2 adsorption capacity inversly related to the molar mass of amine at 25 ͦC and 101 kPa. Accordingly, Na-bentonite modified by monoethanolammonium cations adsorbed as high as 0.475 mmol CO2/g compared to 0.148 and 0.087 mmol CO2/g for that one treated with di- and triethanolammonium cations, respectively.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document