scholarly journals CaCO3-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujie Zhu ◽  
Zhijuan Yang ◽  
Ziliang Dong ◽  
Yimou Gong ◽  
Yu Hao ◽  
...  

AbstractDue to the negative roles of tumor microenvironment (TME) in compromising therapeutic responses of various cancer therapies, it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment. Herein, we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method, thereby enabling effective co-encapsulation of both doxorubicin (DOX), an immunogenic cell death (ICD) inducer, and alkylated NLG919 (aNLG919), an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). The obtained DOX/aNLG919-loaded CaCO3 nanoparticles (DNCaNPs) are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1. Upon intravenous injection, such DNCaNPs show efficient tumor accumulation, improved tumor penetration of therapeutics and neutralization of acidic TME. As a result, those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+ cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells (Tregs), thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy & immunotherapy. This study presents a compendious strategy for construction of pH-responsive nanoparticles, endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra J. Spencer ◽  
Paul F. McKay ◽  
Sandra Belij-Rammerstorfer ◽  
Marta Ulaszewska ◽  
Cameron D. Bissett ◽  
...  

AbstractSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3044 ◽  
Author(s):  
Peter Kok-Ting Wan ◽  
Michelle Kwan-Yee Siu ◽  
Thomas Ho-Yin Leung ◽  
Xue-Tang Mo ◽  
Karen Kar-Loen Chan ◽  
...  

Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.


2002 ◽  
Vol 76 (23) ◽  
pp. 11911-11919 ◽  
Author(s):  
Jie Zhang ◽  
Nicole Silvestri ◽  
J. Lindsay Whitton ◽  
Daniel E. Hassett

ABSTRACT Neonates are thought to mount less vigorous adaptive immune responses than adults to antigens and infectious agents. This concept has led to a delay in the administration of many currently available vaccines until late infancy or early childhood. It has recently been shown that vaccines composed of plasmid DNA can induce both humoral and cell-mediated antimicrobial immunity when administered within hours of birth. In most of these studies, immune responses were measured weeks or months after the initial vaccination, and it is therefore questionable whether the observed responses were actually the result of priming of splenocytes within the neonatal period. Here we show that DNA vaccination at birth results in the rapid induction of antigen-specific CD8+ T cells within neonatal life. Analyses of T-cell effector functions critical for the resolution of many viral infections revealed that neonatal and adult CD8+ T cells produce similar arrays of cytokines. Furthermore, the avidities of neonatal and adult CD8+ T cells for peptide and the rapidity with which they upregulate cytokine production after recall encounters with antigen are similar. Protective immunity against the arenavirus lymphocytic choriomeningitis virus, which is mediated by CD8+ cytotoxic T cells, is also rapidly acquired within the neonatal period. Collectively these data imply that, at least in the case of CD8+ T cells, neonates are not as immunodeficient as previously supposed and that DNA vaccines may be an effective and safe means of providing critical cell-mediated antiviral immunity extremely early in life.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Wendelina J. M. Mackus ◽  
Florine N. J. Frakking ◽  
Annette Grummels ◽  
Laila E. Gamadia ◽  
Godelieve J. de Bree ◽  
...  

Abstract In patients with B-cell chronic lymphocytic leukemia (B-CLL), the absolute number of T cells is increased. Although it has been suggested that these T cells might be tumor specific, concrete evidence for this hypothesis is lacking. We performed a detailed immunophenotypic analysis of the T-cell compartment in the peripheral blood of 28 patients with B-CLL (Rai 0, n = 12; Rai I-II, n = 10; Rai III-IV, n = 6) and 12 healthy age-matched controls and measured the ability of these patients to mount specific immune responses. In all Rai stages a significant increase in the absolute numbers of CD3+ cells was observed. Whereas the number of CD4+ cells was not different from controls, patients with B-CLL showed significantly increased relative and absolute numbers of CD8+ cells, which exhibited a CD45RA+CD27- cytotoxic phenotype. Analysis of specific immune responses with tetrameric cytomegalovirus (CMV)–peptide complexes showed that patients with B-CLL had significantly increased numbers of tetramer-binding CMV-specific CD8+ T cells. The rise in the total number of CD8+ cytotoxic T cells was evident only in CMV-seropositive B-CLL patients. Thus, our data suggest that in patients with B-CLL the composition of T cells is shifted toward a CD8+ cytotoxic cell type in an effort to control infections with persistent viruses such as CMV. Moreover, they offer an explanation for the high incidence of CMV reactivation in CLL patients treated with T cell–depleting agents, such as the monoclonal antibody (mAb) alemtuzumab (Campath; α-CD52 mAb). Furthermore, because in CMV-seronegative patients no increase in cytotoxic CD8+ T cells is found, our studies do not support the hypothesis that tumor-specific T cells account for T-cell expansion in B-CLL.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 989-989
Author(s):  
Yuko Kawano ◽  
Daniel K. Byun ◽  
Hiroki Kawano ◽  
Mark W. LaMere ◽  
Elizabeth A. LaMere ◽  
...  

Abstract Targeted irradiation (TR) is widely used for tumor treatment in the clinic. TR benefits tumor therapy through direct effects as well as poorly understood systemic (abscopal) effects. Recent studies suggest that the systemic innate and acquired immune responses to TR contribute to elimination of tumor cells, but also cause systemic inflammation with prolonged tissue injury that may result in secondary malignancies. To elucidate and eventually target the mechanisms underlying these systemic effects of TR, we utilized a murine model using the small animal radiation research platform (SARRP). To define the dynamics of cytokine production and immune responses after TR, we administered local irradiation to a single tibia of 6-8 week old C57BL/6 male mice using a single dose of 15 Gy. We analyzed bone marrow (BM) and BM extracellular fluid (BMEF) from both the irradiated (TR) and non-irradiated, contralateral (CONT) tibiae at 2, 6, 48 hours, 1 and 3 weeks post-TR, performing phenotypic (flow cytometry) and cytokine analyses. As a tumor-bearing model, we utilized 3-4 weeks old C57BL/6 mice injected with Rhabdomyosarcoma (RMS) in one hind limb, and treated with (1) one dose i.p injection of 1mg/Kg Vincristine (Vin) as chemotherapy model, (2) 4.8GyX5times fractionated TR to the tumor area and (3) combination (TR+Vin) therapy. Analysis of peripheral blood (PB), BM, BMEF was performed 3 weeks after the final TR dose (n = 5-13 mice/time point). We found that multiple inflammatory cytokines and chemokines, such as IL-1b, IL-18, CCL2, CCL3, CXCL2, CXCL9, CXCL10 were upregulated from very early phase (2hrs) up to 48hrs in BMEF of the radiated tibiae. Consistent with the dynamics of these cytokines, we observed influx of myeloid cells in both TR and CONT side and expansion of T cells peaking at 6hrs in BM. At the same time of these immune responses, Norepinephrine (NE) was elevated in BMEF even in CONT side. In the tumor-bearing model of RMS, fractionated TR eliminated the tumor while systemically expanding CD8+ cytotoxic T cells and reducing neutrophils. Vin alone did not eliminate the tumor and was associated with systemic decrease of lymphoid cells and expansion of neutrophils. In Vin+TR, tumor control and CD8+ cell expansion were restored, with normalization of neutrophils. These data suggest that TR in the setting of tumor differentially activates lymphoid and myeloid cells. Since recent studies showed catecholamine production from myeloid cells may augment cytokine production in the setting of infection, we hypothesized that BM myeloid cells respond to radiation-induced cell damage by producing catecholamines that trigger a systemic inflammatory response after TR. To test this hypothesis, we utilized standard long-term bone marrow cultures (LT-BM) that reproduce three-dimensional BM structures with myeloid-skewing in vitro, and irradiated them to look at inflammatory changes induced by radiation at 2, 6 and 24hrs. In this experimental model, 5Gy of radiation led to the elevation of NE along with the production of chemokines CCL2, CCL3, CXCL2, CXCL9 mostly peaking at 6hrs in the cell culture supernatants. In contrast, these responses could not be reproduced in spleen cultures, which also had a much lower baseline NE production compared to LT-BMs. These data indicate that radiation induced-chemokine elevations might come from myeloid cells stimulated by NE, independent of systemic innervation. To define the contribution of catecholamines to cytokine production in LT-BM, we directly stimulated culture-LT-BM with NE and Isoproterenol, a pan beta stimulant. While both agents showed similar effect and increased CXCL2, CXCL9, CCL2 and CCL3 at 6hrs, they decreased CXCL10 level, suggesting that catecholamine mostly stimulate myeloid cells but rather inhibit lymphoid activation through chemokine production. Together, these data show that local irradiation initiates global immune responses, and identify local BM production of NE as its potential trigger. Blocking local catecholamine production in the bone marrow could therefore be a positive adjuvant to TR in tumor treatment by inhibiting unfavorable effects of radiation, such as chronic inflammation with systemic increases of neutrophils, while facilitating expansion and recruitment of the cytotoxic T cells which play an essential beneficial role in tumor immunity. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Fei Wang ◽  
Hao-ran Sun ◽  
Ya-kai Huang ◽  
Jian-peng Gao ◽  
...  

Abstract Purpose Apatinib, an antiangiogenic drug, has showed beneficial effects only in a fraction of advanced gastric cancer (GC) patients. Given the recent success of immunotherapies, combination of apatinib with immune checkpoint inhibitor may provide sustained and potent antitumor responses. Methods Immunocompetent mice with subcutaneous MFC tumors grown were given combination of apatinib and anti-PD-L1 antibody therapy. GC tissues from patients undergoing curative resection in China were collected, and the density of HEVs, MSI status and tumor-infiltrated lymphocytes were analyzed by immunohistochemical staining. Results Combined apatinib and PD-L1 blockade therapy synergistically delayed tumor growth and increased survival in MFC-bearing immunocompetent mice. The combination therapy promoted antitumor immunity by increasing the ratio of CD8+ cytotoxic T cells to Foxp3+ Treg cells, the accumulation of CD20+ B cells and the Th1/Th2 cytokine ratio (IFN-γ/IL-10). The combination therapy induced the formation of HEVs through activation of LTβR signaling, thus promoting CD8+ cytotoxic T cell and CD20+ B cell infiltration in tumors. In clinical GC samples, the density of HEVs positively correlated with the intratumoral infiltration of CD8+ cytotoxic T cells and CD20+ B cells. MSI-high GC showed a higher density of HEVs, CD8+ cytotoxic T cells and CD20+ B cells than MSS/MSI-low GC. GC patients with high densities of HEVs, CD8+ cytotoxic T cells and CD20+ B cells had an improved prognosis with superior overall survival. Conclusion Combining apatinib with PD-L1 blockade treatment synergistically enhances antitumor immune responses and promotes HEV formation in GC.


2021 ◽  
pp. 553-591
Author(s):  
Elena Locci ◽  
Silvia Raymond

A groundbreaking study led by engineering and medical researchers at the California South University (CSU) shows how immune cells engineered in new cancer therapies can overcome physical barriers so that the patient's own immune system can fight tumors. This research could improve the future of millions of cancer patients worldwide. Immunotherapy, instead of using chemicals or radiation, is a type of cancer treatment that helps the patient's immune system fight cancer. T cells are a type of white blood cell that is essential for the body's immune system. Cytotoxic T cells are like soldiers searching for and destroying target invading cells. Although there has been success in using immunotherapy for some types of cancer in the blood or blood-producing organs, T cell work is much more difficult in solid tumors. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2021 ◽  
Vol 13 (600) ◽  
pp. eaax2398
Author(s):  
Manao Kinoshita ◽  
Youichi Ogawa ◽  
Natsumi Hama ◽  
Inkin Ujiie ◽  
Akito Hasegawa ◽  
...  

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening mucocutaneous adverse drug reactions characterized by massive epidermal detachment. Cytotoxic T cells and associated effector molecules are known to drive SJS/TEN pathophysiology, but the contribution of innate immune responses is not well understood. We describe a mechanism by which neutrophils triggered inflammation during early phases of SJS/TEN. Skin-infiltrating CD8+ T cells produced lipocalin-2 in a drug-specific manner, which triggered the formation of neutrophil extracellular traps (NETs) in early lesional skin. Neutrophils undergoing NETosis released LL-37, an antimicrobial peptide, which induced formyl peptide receptor 1 (FPR1) expression by keratinocytes. FPR1 expression caused keratinocytes to be vulnerable to necroptosis that caused further release of LL-37 by necroptotic keratinocytes and induced FPR1 expression on surrounding keratinocytes, which likely amplified the necroptotic response. The NETs-necroptosis axis was not observed in less severe cutaneous adverse drug reactions, autoimmune diseases, or neutrophil-associated disorders, suggesting that this was a process specific to SJS/TEN. Initiation and progression of SJS/TEN keratinocyte necroptosis appear to involve a cascade of events mediated by innate and adaptive immune responses, and understanding these responses may contribute to the identification of diagnostic markers or therapeutic targets for these adverse drug reactions.


Sign in / Sign up

Export Citation Format

Share Document