scholarly journals Interfacial Engineering Strategy for High-Performance Zn Metal Anodes

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bin Li ◽  
Xiaotan Zhang ◽  
Tingting Wang ◽  
Zhangxing He ◽  
Bingan Lu ◽  
...  

AbstractDue to their high safety and low cost, rechargeable aqueous Zn-ion batteries (RAZIBs) have been receiving increased attention and are expected to be the next generation of energy storage systems. However, metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions, which severely hinder the further development of RAZIBs. Researchers have attempted to design high-performance Zn anodes by interfacial engineering, including surface modification and the addition of electrolyte additives, to stabilize Zn anodes. The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions, which effectively improves the cycling stability of the Zn anode. This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions. In addition, the research progress of interfacial engineering strategies for RAZIBs is summarized and classified. Finally, prospects and suggestions are provided for the design of highly reversible Zn anodes.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziqi Wang ◽  
Liubing Dong ◽  
Weiyuan Huang ◽  
Hao Jia ◽  
Qinghe Zhao ◽  
...  

AbstractOwing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1161 ◽  
Author(s):  
Jun Xu ◽  
Chan Chen ◽  
Zhifei Han ◽  
Yuanyuan Yang ◽  
Junsheng Li ◽  
...  

Electrochemical oxygen reduction and oxygen evolution are two key processes that limit the efficiency of important energy conversion devices such as metal–air battery and electrolysis. Perovskite oxides are receiving discernable attention as potential bifunctional oxygen electrocatalysts to replace precious metals because of their low cost, good activity, and versatility. In this review, we provide a brief summary on the fundamentals of perovskite oxygen electrocatalysts and a detailed discussion on emerging high-performance oxygen electrocatalysts based on perovskite, which include perovskite with a controlled composition, perovskite with high surface area, and perovskite composites. Challenges and outlooks in the further development of perovskite oxygen electrocatalysts are also presented.


Nanoscale ◽  
2019 ◽  
Vol 11 (48) ◽  
pp. 23318-23329 ◽  
Author(s):  
Lina Jia ◽  
Chen Li ◽  
Yaru Zhao ◽  
Bitao Liu ◽  
Shixiu Cao ◽  
...  

Non-precious metal-based electrocatalysts with high activity and stability for efficient hydrogen evolution reactions are of critical importance for low-cost and large-scale water splitting.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Dongping Xue ◽  
Huicong Xia ◽  
Wenfu Yan ◽  
Jianan Zhang ◽  
Shichun Mu

Abstract Electrocatalytic carbon dioxide (CO2) reduction (ECR) has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy, but there are still some problems such as poor stability, low activity, and selectivity. While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost, high activity, and long-term stability. Recently, defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials. Here, the present review mainly summarizes the latest research progress of the construction of the diverse types of defects (intrinsic carbon defects, heteroatom doping defects, metal atomic sites, and edges detects) for carbon materials in ECR, and unveil the structure–activity relationship and its catalytic mechanism. The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed, as well as possible future solutions. It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Na Zhu ◽  
Kun Zhang ◽  
Feng Wu ◽  
Ying Bai ◽  
Chuan Wu

Developing post-lithium-ion battery technology featured with high raw material abundance and low cost is extremely important for the large-scale energy storage applications, especially for the metal-based battery systems such as aluminum, sodium, and magnesium ion batteries. However, their developments are still in early stages, and one of the major challenges is to explore a safe and reliable electrolyte. An ionic liquid-based electrolyte is attractive and promising for developing safe and nonflammable devices with wide temperature ranges owing to their several unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. In this review, the recent emerging limitations and strategies of ionic liquid-based electrolytes in the above battery systems are summarized. In particular, for aluminum-ion batteries, the interfacial reaction between ionic liquid-based electrolytes and the electrode, the mechanism of aluminum storage, and the optimization of electrolyte composition are fully discussed. Moreover, the strategies to solve the problems of electrolyte corrosion and battery system side reactions are also highlighted. Finally, a general conclusion and a perspective focusing on the current development limitations and directions of ionic liquid-based electrolytes are proposed along with an outlook. In order to develop novel high-performance ionic liquid electrolytes, we need in-depth understanding and research on their fundamentals, paving the way for designing next-generation products.


Author(s):  
Zhexuan Liu ◽  
Mulan Qin ◽  
Shan Guo ◽  
Canpeng Li ◽  
Qiong Su ◽  
...  

We have highlighted the importance of chalcogenides multiphase in SIBs, focusing on synergistic effect between phases. For the unsolved issues, perspectives are provided to improve the further development of high-performance, low-cost energy storage.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1162
Author(s):  
Bijender Kumar ◽  
Dickens Agumba ◽  
Duc Pham ◽  
Muhammad Latif ◽  
Dinesh ◽  
...  

By increasing the environmental concerns and depletion of petroleum resources, bio-based resins have gained interest. Recently, lignin, vanillin (4-hydroxy-3-methoxybenzaldehyde), and divanillin (6,6′-dihydroxy-5,5′-dimethoxybiphenyl-3,3′-dicarbaldehyde)-based resins have attracted attention due to the low cost, environmental benefits, good thermal stability, excellent mechanical properties, and suitability for high-performance natural fiber composite applications. This review highlights the recent use of lignin, vanillin, and divanillin-based resins with natural fiber composites and their synthesized processes. Finally, discussions are made on the curing kinetics, mechanical properties, flame retardancy, and bio-based resins’ adhesion property.


2019 ◽  
Vol 7 (47) ◽  
pp. 26744-26768 ◽  
Author(s):  
Wentao Yu ◽  
Wenxu Shang ◽  
Peng Tan ◽  
Bin Chen ◽  
Zhen Wu ◽  
...  

Metal–air flow batteries are promising candidates for next-generation energy storage systems because of their high performance and scale flexibility. Further development should be conducted from material to structure design and operation management.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 145 ◽  
Author(s):  
Lin Hu ◽  
Jiaxing Song ◽  
Xinxing Yin ◽  
Zhen Su ◽  
Zaifang Li

Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally.


Sign in / Sign up

Export Citation Format

Share Document