Numerical investigation of the cavitation dynamic parameters in a Francis turbine draft tube with columnar vortex rope

2019 ◽  
Vol 31 (5) ◽  
pp. 931-939 ◽  
Author(s):  
Jing Yang ◽  
Ling-jiu Zhou ◽  
Zheng-wei Wang
2016 ◽  
Vol 33 (1) ◽  
pp. 139-155 ◽  
Author(s):  
Jing Yang ◽  
Lingjiu Zhou ◽  
Zhengwei Wang

Purpose – The vortex ropes in draft tube of Francis turbine always cause fluctuation and vibration, which consequently threaten the safety and stability of hydro turbines. The purpose of this paper is to use a cavitation flow computational method to simulate spiral vortex ropes under part load conditions and columnar vortex ropes under high-load conditions in draft tube. The unsteady cavitating flow characteristics in draft tube and its interaction with runner cavitation were analyzed. Design/methodology/approach – The calculation method was verified by cavitation simulation around a 3D hydrofoil. The results show that the Large Eddy Simulation (LES) turbulence model with the Zwart-Gerber-Blemari cavitation model have comparative advantage in cavitation simulations whether from capture of cavity shape or prediction of pressure changes. So it was chosen to simulate the two-phase cavitation flow in Francis turbine. The boundary conditions for inlet and outlet were set to inlet total pressure and outlet static pressure. The finite volume method with the central difference was adopted to discretize the equations. Findings – The calculated Thoma number agreed well with the experimental data. The vortex rope diameter and length increased with the cavitation development for both of the two types of vortex ropes conditions. The maximum peak-to-peak values of pressure pulsations located in the draft tube elbow part under all of the Thoma numbers conditions. Under spiral vortex rope conditions, the pressure pulsation in the same section of draft tube cone show obviously phase shift. The vortex rope affects the development of runner cavitation, which induces the symmetric and axisymmetric cavitation region in the suction side of blades for spiral and columnar vortex rope condition, respectively. Research limitations/implications – The mesh independence had been checked only in non-cavitation flow; in addition, the mesh density did not well satisfy the requirements of LES due to the limitations of computing power. The higher mesh density on a simplified model with one blade flow path and the entire draft tube may be helpful for obtaining more precise results. Originality/value – The spiral and columnar vortex ropes in a Francis turbine were compared and analyzed. The annular hydraulic jump appeared in the columnar vortex rope conditions has little effects on the pressure pulsations. The uneven flow field caused by spiral vortex led to the asymmetric cavitation development.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7626
Author(s):  
Tao Guo ◽  
Lihui Xu ◽  
Wenquan Wang

The inter-blade passage vortex, the vortex rope of the draft tube, and the vortex in the guide apparatus are the characteristics of flow instability of the Francis turbine, which may lead to fatigue failure in serious cases. In the current study, in order to accurately capture the transient turbulent characteristics of flow under different conditions and fully understand the flow field and vortex structure, we conduct a simulation that adopts sliding grid technology and the large-eddy simulation (LES) method based on the wall-adapting local eddy viscosity (WALE) model. Using the pressure iso-surface method, the Q criterion, and the latest third-generation Liutex vortex identification method, this study analyzes and compares the inter-blade passage vortex, the vortex rope of the draft tube, and the outflow and vortex in the guide apparatus, focusing on the capture ability of flow field information by various vortex identification methods and the unique vortex structure under the condition of a small opening. The results indicate that the dependence of Liutex on the threshold is small, and the scale range of the flow direction vortex captured by Liutex is wider, but the ability of the spanwise vortex is relatively weak. The smaller the opening, the more disorderly the vortexes generated in each component and the more unstable the flow field. In the draft tube, the original shape of the vortex rope is destroyed due to the interaction between vortexes. Under the condition of a small opening, an inter-blade passage vortex is generated, affecting the efficient and stable operation of the turbine.


2020 ◽  
Vol 152 ◽  
pp. 770-780 ◽  
Author(s):  
Huan Cheng ◽  
Lingjiu Zhou ◽  
Quanwei Liang ◽  
Ziwu Guan ◽  
Demin Liu ◽  
...  

2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


2014 ◽  
Vol 81 (6) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.


Author(s):  
Mohammad Hossein Khozaei ◽  
Arthur Favrel ◽  
Toshitake Masuko ◽  
Naoki Yamaguchi ◽  
Kazuyoshi Miyagawa

Abstract This paper focuses on the generation of twin vortex rope in the draft-tube elbow of a Francis turbine at deep part-load operation through analyzing the results of model tests along with numerical simulations. Model tests, including pressure fluctuations measurements, are conducted over 10 speed factors. By considering the frequency of the pressure fluctuations with respect to the swirl intensity at the runner outlet, the part-load operating range is divided into three regimes, with two clear transitions between each occurring at swirl numbers 0.4 and 1.7. For operating conditions with a swirl number S>0.4, a linear correlation between the frequency of the precessing vortex core and the swirl number is established. During deep part-load regime (S>1.7), low-frequency pressure fluctuations appear. Their frequency feature another linear correlation with the swirl number. Unsteady CFD simulation of the full domain is performed to elucidate the generation mechanisms of the low-frequency fluctuations. By tracking the center of the vortical structures along the draft-tube, generation of three vortices in the elbow responsible for the pressure fluctuations at the lowest frequency is highlighted: the main PVC hits the draft-tube wall in the elbow resulting in its break down into three vortices rotating with half the rotational speed of the PVC. Two of the vortices rotate with opposite angular position, constituting a structure of twin vortices. The periodic rotation of these three vortices in the elbow induces the low-frequency pressure fluctuations.


2014 ◽  
Vol 81 (6) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

Numerical simulations and investigation of a method for controlling the vortex rope formation in draft tubes are carried out in this paper, which is the second part of a two-paper series. As shown in the companion paper, formation of the vortex rope is associated with a large stagnant region at the center of the draft tube. Therefore, it is concluded that a successful control technique should focus on the elimination of this region. In practice, this can be performed by axially injecting a small fraction (a few percent of the total flow rate) of water into the draft tube. Water jet is supplied from the high-pressure flow upstream of the turbine spiral case by a bypass line; thus, no extra pump is needed in this method. It is shown that this method is very effective in elimination of the stagnant region in a simplified draft tube operating at two part-load conditions, i.e., at 91% and 70% of the best efficiency point (BEP) flow rate. This results in improvement of the draft tube performance and reduction of hydraulic losses. The loss coefficient is reduced by as much as 50% for the case with 91% of BEP flow rate and 14% for the case with 70% of BEP flow rate. Unsteady, three-dimensional simulations show that the jet increases the axial momentum of flow at the center of the draft tube and decreases the wake of the crown cone and thereby decreases the shear at the interface of the stagnant region and high velocity outer flow, which ultimately results in elimination of the vortex rope. Furthermore, reduction (by about 1/3 in the case with 70% of BEP flow rate) of strong pressure fluctuations leads to reliable operation of the turbine.


2011 ◽  
Vol 105-107 ◽  
pp. 52-55
Author(s):  
Si Qing Zhang ◽  
Chang Zhen Li ◽  
Li Xiang Zhang ◽  
Xiao Xu Zhang

The RNG turbulence model is used to carry out the 3D steady turbulent calculation on the runner and draft tube of the Francis turbine. And the prototype of the Francis turbine is HLA351. Under 8 typical operating conditions, numerical simulation on how the runner outlet urge the vortex rope in draft tube are accomplished in this paper, and the calculation models are long blade model and mixed blade model. The results show that the runner outlet of the mixed model can lead the vortex rope location to the downstream relatively, reduce the circumfluence and cushion area and the probability of the second-vortex. What’s more, the flow pattern in mixed model is superior to the long model and that benefits the operation stability and economy of the unit.


Sign in / Sign up

Export Citation Format

Share Document