scholarly journals 3D bioprinting: current status and trends—a guide to the literature and industrial practice

Author(s):  
Silvia Santoni ◽  
Simone G. Gugliandolo ◽  
Mattia Sponchioni ◽  
Davide Moscatelli ◽  
Bianca M. Colosimo

AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting. Graphic abstract

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1957
Author(s):  
Yufan Zheng ◽  
Wenkang Zhang ◽  
David Moises Baca Lopez ◽  
Rafiq Ahmad

Multi-material additive manufacturing of polymers has experienced a remarkable increase in interest over the last 20 years. This technology can rapidly design and directly fabricate three-dimensional (3D) parts with multiple materials without complicating manufacturing processes. This research aims to obtain a comprehensive and in-depth understanding of the current state of research and reveal challenges and opportunities for future research in the area. To achieve the goal, this study conducts a scientometric analysis and a systematic review of the global research published from 2000 to 2021 on multi-material additive manufacturing of polymers. In the scientometric analysis, a total of 2512 journal papers from the Scopus database were analyzed by evaluating the number of publications, literature coupling, keyword co-occurrence, authorship, and countries/regions activities. By doing so, the main research frame, articles, and topics of this research field were quantitatively determined. Subsequently, an in-depth systematic review is proposed to provide insight into recent advances in multi-material additive manufacturing of polymers in the aspect of technologies and applications, respectively. From the scientometric analysis, a heavy bias was found towards studying materials in this field but also a lack of focus on developing technologies. The future trend is proposed by the systematic review and is discussed in the directions of interfacial bonding strength, printing efficiency, and microscale/nanoscale multi-material 3D printing. This study contributes by providing knowledge for practitioners and researchers to understand the state of the art of multi-material additive manufacturing of polymers and expose its research needs, which can serve both academia and industry.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Marisela Rodriguez-Salvador

Optical tissue phantoms enable to mimic the optical properties of biological tissues for biomedical device calibration, new equipment validation, and clinical training for the detection, and treatment of diseases. Unfortunately, current methods for their development present some problems, such as a lack of repeatability in their optical properties. Where the use of three-dimensional (3D) printing or 3D bioprinting could address these issues. This paper aims to evaluate the use of this technology in the development of optical tissue phantoms. A competitive technology intelligence methodology was applied by analyzing Scopus, Web of Science, and patents from January 1, 2000, to July 31, 2018. The main trends regarding methods, materials, and uses, as well as predominant countries, institutions, and journals, were determined. The results revealed that, while 3D printing is already employed (in total, 108 scientific papers and 18 patent families were identified), 3D bioprinting is not yet applied for optical tissue phantoms. Nevertheless, it is expected to have significant growth. This research gives biomedical scientists a new window of opportunity for exploring the use of 3D bioprinting in a new area that may support testing of new equipment and development of techniques for the diagnosis and treatment of diseases.


2021 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Fariba Sirous ◽  
Chaudhery Mustansar Hussain

In recent years, additive manufacturing, or in other words three-dimensional (3D) printing technology has rapidly become one of the hot topics in the world. Among the vast majority of materials,...


Publications ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 50
Author(s):  
Carlos Yure B. Oliveira ◽  
Cicero Diogo L. Oliveira ◽  
Marius N. Müller ◽  
Elizabeth P. Santos ◽  
Danielli M. M. Dantas ◽  
...  

Understanding the evolution of scientific literature is a critical and necessary step for the development and strengthening of a research field. However, an overview of global dinoflagellate research remains unavailable. Herein, global dinoflagellate research output was analyzed based on a scientometric approach using the Scopus data archive. The basic characteristics and worldwide interactions of dinoflagellate research output were analyzed to determine the temporal evolution and new emerging trends. The results confirm that dinoflagellate research output, reflected in the number of publications, is a fast-growing area since the mid-1990s. In total, five research subareas emerged using a bibliometric keywords analysis: (1) “symbiosis with coral reefs”, (2) “phylogeny”, (3) “palynology”, (4) “harmful algal blooms” and (5) “nutrition strategies”. Dinoflagellate publications were modeled by fish production (both aquaculture and fisheries) and economic and social indexes. Finally, directions for future research are proposed and discussed. The presented scientometric analysis confirms that dinoflagellate research is an active and important area with focus on mitigating economic impacts, especially in regard to fish production.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2262 ◽  
Author(s):  
Andrea S. Theus ◽  
Liqun Ning ◽  
Boeun Hwang ◽  
Carmen Gil ◽  
Shuai Chen ◽  
...  

Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.


2021 ◽  
Vol 22 (8) ◽  
pp. 3971
Author(s):  
Jianhua Zhang ◽  
Esther Wehrle ◽  
Marina Rubert ◽  
Ralph Müller

The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 959
Author(s):  
Naoko Ikeo ◽  
Hidetsugu Fukuda ◽  
Aira Matsugaki ◽  
Toru Inoue ◽  
Ai Serizawa ◽  
...  

Metal additive manufacturing is a powerful tool for providing the desired functional performance through a three-dimensional (3D) structural design. Among the material functions, anisotropic mechanical properties are indispensable for enabling the capabilities of structural materials for living tissues. For biomedical materials to replace bone function, it is necessary to provide an anisotropic mechanical property that mimics that of bones. For desired control of the mechanical performance of the materials, we propose a novel 3D puzzle structure with cube-shaped parts comprising 27 (3 × 3 × 3) unit compartments. We designed and fabricated a Co–Cr–Mo composite structure through spatial control of the positional arrangement of powder/solid parts using the laser powder bed fusion (L-PBF) method. The mechanical function of the fabricated structure can be predicted using the rule of mixtures based on the arrangement pattern of each part. The solid parts in the cubic structure were obtained by melting and solidifying the metal powder with a laser, while the powder parts were obtained through the remaining nonmelted powders inside the structure. This is the first report to achieve an innovative material design that can provide an anisotropic Young’s modulus by arranging the powder and solid parts using additive manufacturing technology.


2020 ◽  
Vol 21 (19) ◽  
pp. 7012 ◽  
Author(s):  
Tullio Genova ◽  
Ilaria Roato ◽  
Massimo Carossa ◽  
Chiara Motta ◽  
Davide Cavagnetto ◽  
...  

Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developments of bone bioprinting and bioinks, focusing the attention on crucial aspects of bone bioprinting such as selecting cell sources and attaining a viable vascularization within the newly printed bone. The main bioprinters currently available on the market and their characteristics have been taken into consideration, as well.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2278 ◽  
Author(s):  
Fei Xing ◽  
Zhou Xiang ◽  
Pol Maria Rommens ◽  
Ulrike Ritz

Vascularization in bone tissues is essential for the distribution of nutrients and oxygen, as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with functional vascular networks has great potential for biomimicking nature bone tissue in vitro and enhancing bone regeneration in vivo. Over the past decades, many approaches have been applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial architecture and the encapsulated cell distribution precisely, which posed a significant challenge in constructing complex vascularized bone tissues with precise biomimetic properties. In recent years, as a pioneering technology, three-dimensional (3D) bioprinting technology has been applied to fabricate multiscale, biomimetic, multi-cellular tissues with a highly complex tissue microenvironment through layer-by-layer printing. This review discussed the application of 3D bioprinting technology in the vascularized tissue-engineered bone fabrication, where the current status and unique challenges were critically reviewed. Furthermore, the mechanisms of vascular formation, the process of 3D bioprinting, and the current development of bioink properties were also discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 308
Author(s):  
Sandra Ruiz-Alonso ◽  
Ilia Villate-Beitia ◽  
Idoia Gallego ◽  
Markel Lafuente-Merchan ◽  
Gustavo Puras ◽  
...  

Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.


Sign in / Sign up

Export Citation Format

Share Document