scholarly journals Comparison of historical and current temperatures in show caves (Slovenia)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stanka Šebela ◽  
Janez Turk

AbstractHistorical air temperatures at three karst caves in Slovenia have been compared to current data time series. In Postojnska Jama (PJ), the most visited show cave in Slovenia, the significant temperature difference between historical and modern measurements at the Pulpito site relates to the months April to November. Mean monthly temperatures measured at the Sepolcro site (PJ) in the modern period (2016–2019) are year round significantly higher than in the historical period (1935–1937). The temperature increase over the last 85 years in PJ is attributed to outside temperature rise and additional heat input from visitors, especially for Sepolcro site. A comparison of current (2017–2019) and historical (1956–1957) temperature data in touristically poorly visited Predjama Cave shows lower increase as in PJ and is completely related to outside cave conditions. In the case of Škocjanske Jame (Tiha Jama), air temperature has not significantly increased since the historical 1928 measurements because the monitoring site looks to be morphologically isolated from significant impacts of outside climate and visitors.

2016 ◽  
Vol 73 (5) ◽  
pp. 785-792 ◽  
Author(s):  
Patrik Bohman ◽  
Lennart Edsman ◽  
Alfred Sandström ◽  
Per Nyström ◽  
Marika Stenberg ◽  
...  

The signal crayfish (Pacifastacus leniusculus) was introduced to Sweden in 1960, and it has a high commercial and recreational value, but it may also have negative effects on native ecosystems. To better predict how climate warming will affect population dynamics of this cool-water crayfish, we explored the role of temperature and density dependence as explanatory factors of the subsequent years’ catch rates of commercially sized signal crayfish in four Swedish lakes. We found air temperatures to be good proxies for water temperatures in all lakes, except during winter. We could only obtain water temperature data for Lake Vättern, and winter temperature data were therefore only included in the analysis of catch-per-unit-effort patterns in this lake. Our results indicate that increasing mean air temperatures will potentially affect the population dynamics of cool-water freshwater crayfish species such as the signal crayfish. Based on data from four lakes, it seems that the population dynamics of signal crayfish are lake-specific and could be affected by either recruitment during the juvenile stage, the survival and growth of adults, or both. Increased fluctuations in water temperature during winter may potentially influence adult survival. To better predict the effects of global warming on the dynamics of cool-water crayfish populations, we suggest that future studies should investigate recruitment in crayfish along temperature gradients and the influence of variations in water temperature on winter mortality.


2021 ◽  
Vol 9 (1) ◽  
pp. 11-25
Author(s):  
Aleksandar Antić ◽  
Nataša Dragović ◽  
Nemanja Tomić

Show caves and speleotourism can have a major impact on the tourism industry as well as the local and regional economic development. Promotion is a crucial aspect of generating plans and strategies for tourist caves. In the case of speleotourism, promotion needs to be professional, attractive and continuous because caves are often considered to be dangerous and inaccessible places. The main goal of this paper is to determine the quality of official show cave websites in Serbia. The assessment included the application of modified Website evaluation model. Website design techniques were also assessed, including the performance and the degree of optimization for search engines SEO. The results show extreme deficiencies and weaknesses regarding the level of internet promotion of Serbian show (tourist) caves. These results are of great importance for cave management teams and tourist organizations because they point out the negative factors of cave promotion in Serbia that need to be revised.


2018 ◽  
Vol 31 (15) ◽  
pp. 6051-6071 ◽  
Author(s):  
Nicholas Lewis ◽  
Judith Curry

Energy budget estimates of equilibrium climate sensitivity (ECS) and transient climate response (TCR) are derived based on the best estimates and uncertainty ranges for forcing provided in the IPCC Fifth Assessment Report (AR5). Recent revisions to greenhouse gas forcing and post-1990 ozone and aerosol forcing estimates are incorporated and the forcing data extended from 2011 to 2016. Reflecting recent evidence against strong aerosol forcing, its AR5 uncertainty lower bound is increased slightly. Using an 1869–82 base period and a 2007–16 final period, which are well matched for volcanic activity and influence from internal variability, medians are derived for ECS of 1.50 K (5%–95% range: 1.05–2.45 K) and for TCR of 1.20 K (5%–95% range: 0.9–1.7 K). These estimates both have much lower upper bounds than those from a predecessor study using AR5 data ending in 2011. Using infilled, globally complete temperature data give slightly higher estimates: a median of 1.66 K for ECS (5%–95% range: 1.15–2.7 K) and 1.33 K for TCR (5%–95% range: 1.0–1.9 K). These ECS estimates reflect climate feedbacks over the historical period, assumed to be time invariant. Allowing for possible time-varying climate feedbacks increases the median ECS estimate to 1.76 K (5%–95% range: 1.2–3.1 K), using infilled temperature data. Possible biases from non–unit forcing efficacy, temperature estimation issues, and variability in sea surface temperature change patterns are examined and found to be minor when using globally complete temperature data. These results imply that high ECS and TCR values derived from a majority of CMIP5 climate models are inconsistent with observed warming during the historical period.


Author(s):  
Peter J. Bosscher ◽  
Hussain U. Bahia ◽  
Suwitho Thomas ◽  
Jeffrey S. Russell

Six test sections were constructed on US-53 in Trempealeau County by using different performance-graded asphalt binders to validate the Superpave pavement temperature algorithm and the binder specification limits. Field instrumentation was installed in two of the test sections to monitor the thermal behavior of the pavement as affected by weather. The instrumentation was used specifically to monitor the temperature of the test sections as a function of time and depth from the pavement surface. A meteorological station was assembled at the test site to monitor weather conditions, including air temperature. Details of the instrumentation systems used and analysis of the data collected during the first 22 months of the project are presented. The analysis was focused on development of a statistical model for estimation of low and high pavement temperatures from meteorological data. The model was compared to the Superpave recommended model and to the more recent model recommended by the Long-Term Pavement Performance (LTPP) program. The temperature data analysis indicates a strong agreement between the new model and the LTPP model for the estimation of low pavement design temperature. However, the analysis indicates that the LTPP and Superpave models underestimate the high pavement design temperature at air temperatures higher than 30°C. The temperature data analyses also indicate that there are significant differences between the standard deviation of air temperatures and the standard deviation of the pavement temperatures. These differences raise some questions about the accuracy of the reliability estimates used in the current Superpave recommendations.


Author(s):  
Takahide Sakagami ◽  
Shiro Kubo

In this paper, lock-in thermography techniques for quantitative nondestructive evaluations developed by the present authors are reviewed. Self-reference lock-in thermography was developed for remote nondestructive testing of fatigue cracks. This technique is based on the measurement of thermoelastic temperature change due to stress change. Cracks can be identified from significant temperature change observed at crack tips due to the stress singularity. For accurate measurement of the thermoelastic temperature change under random loading, a self-reference lock-in data processing technique was developed, in which a reference signal was constructed by using the temperature data simultaneously taken at a remote area. Thermoelastic temperature change in a region of interest was correlated with that at the area for reference signal construction. It enabled us to measure the relative stress distribution under random loading without using any external loading signal. The self-reference lock-in thermography was applied for fatigue crack identification in welded steel plate specimens and actual steel structures. It was found that significant temperature change was observed at the crack tip in the self-reference lock-in thermal image, demonstrating the feasibility of the proposed technique. Lock-in thermography technique was also applied to quantitative nondestructive evaluation of material loss defects. Transient temperature data under pulse or step heating were measured by infrared thermography. Temperature data were processed by the lock-in analysis scheme based on the Fourier series expansion, in which Fourier coefficients synchronizing with sine and cosine waves were correlated with defect parameters. Experimental investigations were conducted using steel samples with artificial material loss defects. It was found that the defect parameters can be quantitatively determined from the Fourier coefficients, demonstrating the feasibility of the proposed technique.


2007 ◽  
Vol 1 (1) ◽  
Author(s):  
Wilfried Lippitz

This paper considers the issue of alterity in education, first defining the question of the "other" or the "foreign" as it appears in a number of educational discourses and contexts. The paper then presents two different, historically-localizable aspects of the pedagogical encounter with foreignness or otherness. Both of these are associated with periods that have an important place in German cultural and intellectual history. The first is the transition from the middle ages to the early-modern period, the time of John Amos Comenius' Orbis Sensualium Pictus. Despite the achievements of this particular work as an encyclopedic and pedagogical introduction to the "visible world," it presents a rather deleterious treatment of the foreign in its contemporaneous manifestation in Northern Europe. The second historical period is the 19th century, and what is of principle concern here is the treatment of the foreign in grand, synthetic neo-humanistic theories of time. While the processes of dialectical assimilation and integration to which the foreign or other was subjected in these theories were not as explicit or overt as in preceding periods, they are still comparable in terms of their ultimate effect. This paper concludes by considering two 20th century articulations of education or Bildung in which the irreducible presence of the foreign or other in human development is explicitly acknowledged and affirmed, and the issue of its respect and recouperation is directly addressed, sometimes with significant and valuable consequences for pedagogy.


MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 417-428
Author(s):  
JANAK LAL NAYAVA ◽  
SUNIL ADHIKARY ◽  
OM RATNA BAJRACHARYA

This paper investigates long term (30 yrs) altitudinal variations of surface air temperatures based on air temperature data of countrywide scattered 22 stations (15 synoptic and 7 climate stations) in Nepal. Several researchers have reported that rate of air temperature rise (long term trend of atmospheric warming) in Nepal is highest in the Himalayan region (~ 3500 m asl or higher) compared to the Hills and Terai regions. Contrary to the results of previous researchers, however this study found that the increment of annual mean temperature is much higher in the Hills (1000 to 2000 m asl) than in the Terai and Mountain Regions. The temperature lapse rate in a wide altitudinal range of Nepal (70 to 5050 m asl) is -5.65 °C km-1. Warming rates in Terai and Trans-Himalayas (Jomsom) are 0.024 and 0.029 °C/year respectively.  


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Peng Zhao ◽  
Lu Gao ◽  
Jianhui Wei ◽  
Miaomiao Ma ◽  
Haijun Deng ◽  
...  

In this study, 2 m air temperature data from 24 meteorological stations in the Qilian Mountains (QLM) are examined to evaluate ERA-Interim reanalysis temperature data derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period of 1979–2017. ERA-Interim generally captures the monthly, seasonal, and annual variation very well. High daily correlations ranging from 0.956 to 0.996 indicate that ERA-Interim captures the daily temperature observations very well. However, an average root-mean-square error (RMSE) of ±2.7°C of all stations reveals that ERA-Interim should not be directly applied at individual sites. The biases are mainly attributed to the altitude differences between ERA-Interim grid points and stations. The positive trend (0.457°C/decade) is significant over the Qilian Mountains based on the 1979–2017 observations. ERA-Interim captures the warming trend very well with an increase rate of 0.384°C/decade. The observations and ERA-Interim both show the largest positive trends in summer with the values of 0.552°C/decade and 0.481°C/decade, respectively. We conclude that in general ERA-Interim captures the trend very well for observed 2 m air temperatures and ERA-Interim is generally reliable for climate change research over the Qilian Mountains.


2018 ◽  
Vol 31 (5) ◽  
pp. 1757-1770 ◽  
Author(s):  
Chengdong Xu ◽  
Jinfeng Wang ◽  
Qingxiang Li

Long-term grid historical temperature datasets are the foundation of climate change research. Datasets developed by traditional interpolation methods usually contain data for a period of less than 50 yr, with a relatively low spatial resolution owing to the sparse distribution of stations in the historical period. In this study, the point interpolation based on Biased Sentinel Hospitals Areal Disease Estimation (P-BSHADE) method has been used to interpolate 1-km grids of monthly surface air temperatures in the historical period of 1900–50 in China. The method can be used to remedy the station bias resulting from sparse coverage, and it considers the characteristics of spatial autocorrelation and nonhomogeneity of the temperature distribution to obtain unbiased and minimum error variance estimates. The results have been compared with those from widely used methods such as kriging, inverse distance weighting (IDW), and a combined spline with kriging (TPS-KRG) method, both theoretically and empirically. The leave-one-out cross-validation method using a real dataset was implemented. The root-mean-square error (RMSE) [mean absolute error (MAE)] for P-BSHADE is 0.98°C (0.75°C), while those for TPS-KRG, kriging, and IDW are 1.46° (1.07°), 2.23° (1.51°), and 2.64°C (1.85°C), respectively. The results of validation using a simulated dataset also present the smallest error for P-BSHADE, demonstrating its empirical superiority. In addition to its empirical superiority, the method also can produce a map of the estimated error variance, representing the uncertainty of estimation.


Author(s):  
F. T. Last ◽  
A. M.I Roberts

Observations were made weekly over a period of 30 years of 208 species (trees, shrubs, herbaceous plants and geophytes) from more than 1,000 growing in a garden located 18km east of the Royal Botanic Garden Edinburgh (RBGE), Scotland (lat. 55º 56ʹN: long. 3º 09ʹW). Of these species, 27 were British native or naturalised.The First Flowering Dates (FFD) of 67 species were without significant temperature association with variable weather; the FFDs of the other 141 species reflected, in contrast, the net outcome of ‘major’ associations with late winter/spring temperatures and smaller impacts of autumn/early winter temperatures. Increases in late winter and spring temperatures advanced the onset of flowering in the current year; in contrast, increases in autumn and early winter temperatures tended to be associated with delayed flowering in the following year.With stepwise regression, penalised signal regression and thermal-time models, it was possible to identify species with ‘strong’ associations with both air and soil temperatures and species with ‘weak’ associations with either air or soil temperatures.Thermal-time models for each of 120 species, whose FFDs were associated with temperature, enabled the characterisation of (1) base temperatures, Tb(°C), at, and above which, development towards open flowers is possible; and (2) thermal constants (degree days accumulated between the start of development and the onset of flowering). Together these attributes suggested that each base temperature cohort has species with widely different degree-day requirements. Between 1978 and 2007 mean air temperatures significantly increased by 0.080°C, 0.044°C and 0.026°C yrˉ¹ in the first, second and third quarters; soil temperatures increased by 0.060ºCyrˉ¹in the first quarter. Over the 30-year period, the trends in flowering showed the early (February/March) flowering species flowering c. 24 days sooner; the later flowering species (April/May) advanced by only c. 12 days.


Sign in / Sign up

Export Citation Format

Share Document