scholarly journals Toxicological and safety evaluations of Weissella cibaria strain CMU in animal toxicity and genotoxicity

Author(s):  
Laurie C. Dolan ◽  
Benjamin G. Arceneaux ◽  
Kyung-Hyo Do ◽  
Wan-Kyu Lee ◽  
Geun-Yeong Park ◽  
...  

AbstractWeissella cibaria belongs to the Lactobacillaceae family and has been isolated from traditional fermented foods and saliva of children with good oral health. Previous investigations have shown that W. cibaria CMU (Chonnam Medical University) is expected to be safe based on results of in silico and in vitro analyses. However, there is a lack of studies assessing its safety in vivo. A toxicological safety evaluation of W. cibaria CMU was performed using an acute oral safety study in rats, a 14-day oral range finding study, a subsequent 13-week oral toxicity study in rats and a genetic toxicity battery (in vitro bacterial reverse mutation, in vitro chromosome aberration in Chinese Hamster Ovary cells and in vivo micronucleus study in mice). The results of the studies in rats showed that the acute lethal dose of W. cibaria CMU is > 5000 mg/kg body weight (bw)/day (1.8 × 109 CFU/kg bw/day) and the 14-day or 13-week no observed adverse effect level (NOAEL) is 5000 mg/kg bw/day (1.8 × 109 CFU/kg bw/day), the highest dose administered. W. cibaria CMU was non-mutagenic in the bacterial reverse mutation test and non-clastogenic or aneugenic in vitro and in vivo. In conclusion, the toxicological studies performed demonstrated W. cibaria CMU to be a safe strain to consume. This study is the first study examining the potential of a W. cibaria strain to cause genetic toxicity and subchronic toxicity in rats according to the Organization for Economic Cooperation and Development guidelines.

1996 ◽  
Vol 15 (9) ◽  
pp. 702-735 ◽  
Author(s):  
J. Ashby ◽  
L. Kier ◽  
Age Wilson ◽  
T. Green ◽  
PA Lefevre ◽  
...  

Comprehensive toxicological studies of the herbicide acetochlor are presented and discussed. Although it gave a negative profile of responses in the many toxicity tests conducted there were some findings that prompted further investigation. First, although non-mutagenic in the Sal monella assay, acetochlor was clastogenic to mammalian cells treated in vitro. This clastogenic potential was not expressed in vivo in four rodent cytogenetic assays (bone marrow and germ cells). Second, although acetochlor gave a negative response in rat liver UDS assays when tested at the acute MTD, gavage administration of a single, supra- MTD dose (2000 mg/kg) gave a weak positive assay response. This dose-level (2000 mg/kg) was necrotic to the liver, depressed hepatic glutathione levels by up to ∼80%, altered the metabolism of acetochlor, and was associated with up to 33% lethality. In contrast, reference liver genotoxins such as DMN, DMH and 2AAF were shown to elicit UDS in the absence of such effects, and at ∼400 x lower dose-levels. Finally, microscopic nasal polypoid adenomas were induced in the rat when acetochlor was administered for two years at the maximum tolerated dose (MTD). The tumours were not life-threatening, they did not metastasize, and no DNA damage was induced in the nasal cells of rats maintained on a diet containing the MTD of acetochlor for either 1 or 18 weeks (comet assay). In order to probe the mechanism of action of these high dose toxicities a series of chemical and genetic toxicity studies was conducted on acetochlor and a range of structural analogues. These revealed the chloroacetyl sub structure to be the clastogenic species in vitro. Although relatively inert, this substituent is preferentially reactive to sulphydryl groupings, most evidently, to glutathione (GSH). Similar chemical reactivity and clastogenicity in vitro was observed for two related chemicals bearing a chloroacetyl group, both of which have been defined as non-carcinogens in studies reported by the US NTP. These collective observations indicate that the source of the clastogenicity of acetochlor in vitro is also the source of its rapid detoxification in the rat in vivo, via reaction with GSH. Metabolic studies of acetochlor are described which reveal the formation of a series of GSH-associated biliary metabolites in the rat that were not produced in the mouse. The metabolism of acetochlor in the rat changes with increasing dose-levels, probably because of depletion of hepatic GSH. It is most likely that a rat-specific metabolite is responsible for the rat nasal tumours observed uniquely at elevated dose-levels. The absence of genetic toxicity to the nasal epithelium of rats exposed acutely or sub- chronically to acetochlor favours a non-genotoxic me chanism for the induction of these adenomas. The observation of a time- and dose-related increase in S- phase cells in the nasal epithelium is consistent with this conclusion. Despite some confusion caused by the early use of peri- lethal gavage administrations of acetochlor to rodents, and supra-MTD dietary concentrations in some of the chronic studies, the available MTD data are consistent with acetochlor not posing a genetic or carcinogenic hazard to humans.


Author(s):  
Nurgozhin T. ◽  
Sergazy S. H. ◽  
Adilgozhina G. ◽  
Gulyayev A. ◽  
Shulgau Z. ◽  
...  

Objective:This study investigates the hepatoprotective effect and the antioxidant role of polyphenol concentrate in the experimental model of carbon tetrachloride (CCl4) induced toxicity. Methods: Antioxidant activity of Cabernet Sauvignon grape polyphenol were evaluated by radical scavenging of 1,1-diphenyl-2-picryl hydrazyl radical (DPPH), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+). In addition, the effects of polyphenol concentrate on the survival of Wistar rats in the toxicity model, was also investigated. The polyphenol concentrate was administered for 5 five days prior to injection of carbon tetrachloride in a sub-lethal dose of 300 mg/kg of animal body weight in order to perform histological examinations of the liver and kidney, and detect the levels of AST, ALT and bilirubin. Results: Administration of polyphenol concentrate increased animal survival in the experimental model. Moreover, the intragastric administration of polyphenol concentrate prior to the initiation of the experimental model of toxicity, which was caused by a sub-lethal CCl4 dose, reduced morphological injuries in the liver and kidney, decreased the AST and ALT levels of the blood serum. Discussion and conclusion: Our data demonstrate that polyphenol concentrate possesses an antioxidant potential both in vitro and in vivo by reducing antioxidant stress that was caused by CCl4 administration into rats.


2020 ◽  
Vol 14 (4) ◽  
pp. 295-311
Author(s):  
Ada Gabriel ◽  
Mamman Mohammed ◽  
Mohammed G. Magaji ◽  
Yusuf P. Ofemile ◽  
Ameh P. Matthew ◽  
...  

Background: Snakebite envenomation is a global priority ranked top among other neglected tropical diseases. There is a folkloric claim that Uvaria chamae is beneficial for the management of snakebite and wounds in African ethnobotanical surveys. Besides, there are many registered patents asserting the health benefits of U. chamae. Objective: This study aimed to investigate U. chamae’s potentials and identify candidates for the development of tools for the treatment and management of N. nigricollis envenomation. Methods: Freshly collected U. chamae leaves were air-dried, powdered, and extracted in methanol. The median lethal dose of the extract was determined and further fractionated with n-hexane, n-butanol and ethyl acetate. Each fraction was tested for neutralizing effect against venom-induced haemolytic, fibrinolytic, hemorrhagic, and cytotoxic activities. Results: U. chamae fractions significantly (p<0.05) neutralized the haemolytic activity of N. nigricollis venom in n-butanol; 31.40%, n-hexane; 33%, aqueous residue; 39.60% and ethyl acetate; 40.70% at the concentration of 100mg/ml of each fraction against 10mg/ml of the snake venom when compared to the positive control. The fibrinolytic activity of N. nigricollis venom was significantly (p<0.05) neutralized in n-hexane at 73.88%, n-butanol; 72.22% and aqueous residue; 72.22% by the fractions of U. chamae. In addition, haemorrhagic activity of N. nigricollis venom was significantly (p<0.05) neutralized by U. chamae fractions at the concentrations of 100mg/ml, 200mg/ml and 400mg/ml except for n-butanol and aqueous residues at 400 mg/ml. Conclusion: U. chamae leaves fractions possess a high level of protection against N. nigricollis venoms-induced lethality and thus validate the pharmacological rationale for its usage in the management of N. nigricollis envenomation.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


2010 ◽  
Vol 78 (3) ◽  
pp. 1376-1382 ◽  
Author(s):  
Donna E. Akiyoshi ◽  
Abhineet S. Sheoran ◽  
Curtis M. Rich ◽  
L. Richard ◽  
Susan Chapman-Bonofiglio ◽  
...  

ABSTRACT 5C12 HuMAb is a human monoclonal antibody against the A subunit of Shiga toxin 2 (Stx2). We have previously shown that 5C12 HuMAb effectively neutralizes the cytotoxic effects of this toxin by redirecting its transport within the cell and also by neutralizing the toxin's ability to inhibit protein synthesis. The 5C12 HuMAb and its recombinant IgG1 version protect mice at a dose of 0.6 μg against a lethal challenge of Stx2. The contribution of the Fc region to this observed neutralization activity of the 5C12 antibody against Stx2 was investigated in this study. Using recombinant DNA technology, 5C12 isotype variants (IgG1, IgG2, IgG3, and IgG4) and antibody fragments [Fab, F(ab′)2] were expressed in Chinese hamster ovary cells and evaluated in vitro and in vivo. All four 5C12 isotype variants showed protection in vitro, with the IgG3 and IgG4 variants showing the highest protection in vivo. The Fab and F(ab′)2 fragments also showed protection in vitro but no protection in the mouse toxicity model. Similar results were obtained for a second HuMAb (5H8) against the B subunit of Stx2. The data suggest the importance of the Fc region for neutralization activity, but it is not clear if this is related to the stability of the full-length antibody or if the Fc region is required for effective elimination of the toxin from the body.


1918 ◽  
Vol 28 (5) ◽  
pp. 571-583
Author(s):  
Julia T. Parker

1. The livers of rabbits inoculated with cultures of Bacillus typhosus or Bacillus prodigiosus under certain conditions contain a toxic substance extractable with salt solution. When the toxic extracts are injected intravenously into normal rabbits the latter animals develop symptoms resembling those of anaphylactic shock and succumb. The lethal doses of the toxic extracts are far smaller than those of normal liver extract. 2. The livers of rabbits injected with typhoid antigen also yield a toxic extract. 3. Boiling as well as filtration through a Berkefeld filter only partially detoxicates the extract. 4. Tolerance to one to two lethal doses of the poisonous extracts can be induced by cautious immunization. 5. Rabbits actively immunized to Bacillus typhosus or Bacillus prodigiosus usually resist one lethal dose of the homologous liver poison; and animals tolerant to the typhoid liver poison resist one minimum lethal dose at least of Bacillus typhosus. 6. Typhoid immune serum is not detoxicating either in vivo or in vitro for the typhoid liver poison. 7. The liver poisons are specific, since rabbits actively immunized to either Bacillus typhosus or Bacillus prodigiosus withstand at least one minimum lethal dose of the homologous but not of the heterologous-liver poisons.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 508 ◽  
Author(s):  
Daniela Luz ◽  
Maria Amaral ◽  
Flavia Sacerdoti ◽  
Alan Bernal ◽  
Wagner Quintilio ◽  
...  

Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.


2021 ◽  
Vol 9 (09) ◽  
pp. 489-497
Author(s):  
Priyanka D. Mundhe ◽  
◽  
Balasaheb S. Pawade ◽  
Indrasen G. Waykar ◽  
Innus K. Shaikh ◽  
...  

Snakebite is a life-threatening medical emergency, and globally responsible for millions of deaths. In snakebites accidents only deaths are not a concern, it leads to more morbidities. Due to scanty healthcare facilities in rural areas of India, many people seek alternative treatment available in ethnic practices. Tamarindus Indica (TI) plant is rich in medicinal value and used to treat many diseases including snakebite treatment traditionally. In view of this TI seed coat extract (TISCE) was evaluated for antivenom activity. The phytochemical screening of TISCE was performed to understand its chemical composition. TISCE was evaluated for antivenom activity against Indian cobra venom (ICV), common krait venom (CKV), Russells viper venom (RVV), and saw-scaled viper venom (SCV) for phospholipase A2 (PLA-2), haemorrhagic in vitro and in vivo, procoagulant, proteolytic activity, and lethality studies. TISCE majorly contains saponins, glycosides, alkaloids, and phenolic compounds. Minimum indirect haemorrhagic dose (MIHD) observed for ICV (12.5 µg), CKV (5.0 µg),RVV (10.0 µg), and SVV (12.5 µg). TISCE inhibits the procoagulant activity of all venoms at a concentration of 18.0 µg. It also shows the neutralization of proteolytic enzymes of venom in a dose-dependent manner. A pre-incubated mixture containing five lethal dose 50 (LD50) of venom and TISCE was injected intravenously, all mice survived as venom neutralized by TISCE. The present study demonstrates the ability of TISCE to neutralize snake venom using suitable in vivo and in vitro methods. Further studies required to unravelling the specific active chemical constituent of TISCE that may used as novel alternative snakebite treatment. TISCE was able to prolong the deaths during the simulation study and may be used in the topical pharmaceutical formulation that will reduce local venom reactions causing much morbidity, which will collectively with Anti-snake venom (ASV), used to treat envenomed patients more effectively.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Albert Bolatchiev

The antimicrobial peptides human Beta-defensin-3 (hBD-3) and Epinecidin-1 (Epi-1; by Epinephelus coioides) could be a promising tool to develop novel antibacterials to combat antibiotic resistance. The antibacterial activity of Epi-1 + vancomycin against methicillin-resistant Staphylococcus aureus (22 isolates) and Epi-1 + hBD-3 against carbapenem-resistant isolates of Klebsiella pneumoniae (n = 23), Klebsiella aerogenes (n = 17), Acinetobacter baumannii (n = 9), and Pseudomonas aeruginosa (n = 13) was studied in vitro. To evaluate the in vivo efficacy of hBD-3 and Epi-1, ICR (CD-1) mice were injected intraperitoneally with a lethal dose of K. pneumoniae or P. aeruginosa. The animals received a single injection of either sterile saline, hBD-3 monotherapy, meropenem monotherapy, hBD-3 + meropenem, or hBD-3 + Epi-1. Studied peptides showed antibacterial activity in vitro against all studied clinical isolates in a concentration of 2 to 32 mg/L. In both experimental models of murine sepsis, an increase in survival rate was seen with hBD-3 monotherapy, hBD-3 + meropenem, and hBD-3 + Epi-1. For K. pneumoniae-sepsis, hBD-3 was shown to be a promising option in overcoming the resistance of Klebsiella spp. to carbapenems, though more research is needed. In the P. aeruginosa-sepsis model, the addition of Epi-1 to hBD-3 was found to have a slightly reduced mortality rate compared to hBD-3 monotherapy.


Sign in / Sign up

Export Citation Format

Share Document