Toughening of epoxy resins by modification with acrylic elastomers containing pendant epoxy groups

1990 ◽  
Vol 26 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Takao Iijima ◽  
Masao Tomoi ◽  
Junichi Yamasaki ◽  
Hiroshi Kakiuchi
Keyword(s):  
2019 ◽  
Vol 138 (6) ◽  
pp. 4349-4358 ◽  
Author(s):  
K. Fila ◽  
M. Gargol ◽  
M. Goliszek ◽  
B. Podkościelna

Abstract The aim of this study was the synthesis of three different epoxy compounds based on naphthalene-2,7-diol (2,7-NAF.EP, 2,7-NAF.WEP, 2,7-NAF.P.EP) and then their cross-linking by triethylenetetramine (TETA). All epoxides were prepared by the reaction of naphthalene-2,7-diol with epichlorohydrin but under different conditions and with other catalysts. The structures of the obtained compounds before and after the cross-linking reactions were confirmed by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR). The ATR/FT-IR spectra of cross-linked compounds show disappearance of the C–O–C bands (about 915 cm−1) derived from the epoxy groups. DSC and TG/DTG measurements indicated that the obtained materials possess good thermal resistance; they are stable up to about 250 °C. The hardness of the cross-linked products was determined using the Shore D method. The highest value of hardness was obtained for the 2,7-NAF.EP-POL. Additionally, the UV–Vis absorption spectra of the obtained polymers were registered and evaluated.


2013 ◽  
Vol 43 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Xugang Zhang ◽  
Bin Zhang ◽  
Mingming Sun ◽  
Jianhui Li ◽  
Lei Wang ◽  
...  

Purpose – In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues. Design/methodology/approach – Functionalized CSNPs containing epoxy groups on the surface were synthesized by emulsion polymerization with butyl acrylate as the core and methyl methacrylate copolymerizing with glycidyl methacrylate (GMA) as the shell. CSNPs were used as toughening agents for epoxy resins and their chemical structure was characterized by FT-IR. The morphology of modified epoxy networks (MEPN) was analyzed by SEM and TEM. Both the mechanical properties and thermodynamic properties were studied. Findings – The results show that nearly spherical CSNPs with the particle size of 50-100 nm are obtained. A certain amount of CSNPs are uniformly dispersed in epoxy resins by the grinding method and the MEPN shows the ductile fracture feature. The miscibility between CSNPs and epoxy matrix increases with the increase of GMA concentration which makes more bonds form between them. Epoxy resins toughened with 10 wt% CSNPs containing 10 wt% GMA show the best mechanical properties and the increase in tensile strength and impact strength of the MEPN is 13.5 and 59.7 percent, respectively, over the unmodified epoxy networks. And the improvement in impact strength is not accompanied with loss of thermal resistance. Practical implications – The MEPN can be used as high-performance materials such as adhesives, sealants and matrixes of composites. Originality/value – The functionalized CSNPs are novel and it can greatly increase the toughness of epoxy resins without loss of thermal resistance.


2005 ◽  
Vol 41 (5) ◽  
pp. 1639-1641 ◽  
Author(s):  
Jie Kong ◽  
Rongchang Ning ◽  
Yusheng Tang

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ricardo Acosta Ortiz ◽  
Omar Acosta Berlanga ◽  
Aída Esmeralda García Valdez ◽  
Rafael Aguirre Flores ◽  
José Guadalupe Télles Padilla ◽  
...  

A rapid and efficient method to obtain self-healing epoxy resins is discussed. This method is based on the use of a thiol-disulfide oligomer obtained by partial oxidation of a multifunctional thiol using a hypervalent iodine (III) compound as oxidant. The oligomer was characterized by Fourier transform infrared spectroscopy (FTIR), Raman and nuclear magnetic resonance spectroscopies, and gel permeation chromatography (GPC). The oligomer was a joint component of the thiol-ene system along with a tetra-allyl-functionalized curing agent. The kinetics of the photopolymerization of diglycidylether of bisphenol A (DGEBA) revealed that conversions of the epoxy groups as high as 80% were achieved in only 15 minutes by increasing the concentration of the thiol-ene system in the formulation. The disulfide bonds introduced in the copolymer using the thiol-disulfide oligomer allowed the repairing of the test specimens in as little as 10 minutes when the specimens were heated at 80°C or for 500 minutes at room temperature. The analysis of the mechanical properties using dynamic mechanical analysis (DMA) showed that the specimens displayed a healing efficiency up to 111% compared with the unhealed specimens, depending on the amount of polythioethers present in the copolymer.


2020 ◽  
Vol 869 ◽  
pp. 240-245
Author(s):  
Alexey Voytik ◽  
Georgiy V. Malkov ◽  
Artur T. Kapasharov ◽  
Alexey Yu. Kostin

The aim of this work was to develop methods for the synthesis of organic aerogels based on epoxy resins and to investigate their properties. Aerogels based on DGEBA-epoxy resin were obtained by CO2-supercritical drying of gel samples prepared from acetone solutions of epoxy resin with different amount of catalyst and solvents. As a result, aerogels of different density were obtained; the dependence of density on the solvent content in the samples was revealed. The aerogels were characterized by infrared spectroscopy to define the degree of conversion of the epoxy groups, by SEM to confirm nanoscale morphology of aerogels, as well as by the BET method to determine the specific surface area of the samples and its dependence on the catalyst content and curing conditions.


Chemija ◽  
2021 ◽  
Vol 32 (3-4) ◽  
Author(s):  
D. A. Busel ◽  
V. D. Koshevar ◽  
A. Zarkov ◽  
V. G. Shkadrecova ◽  
A. Kareiva

In this study, the stability of the aqueous dispersions of epoxy oligomers was investigated. The following epoxy oligomers with various numbers of epoxy groups were used for the characterization: NPEL 127, NPEL 128, NPEL 134, NPPN 631, EPOXY 520 and DEG-1. A non-ionic surfactant Emulsogen LCN-287 based on alkyl polyethylene glycol ether was used as an emulsifier. The dispersions of epoxy resins were fabricated by changing the content of a non-ionic surfactant (emulsifier) in a range from 2 to 6 wt.%. It was demonstrated that the stability of aqueous emulsions depends not only on the type of resin, but also on the content of the oil phase and the concentration of the emulsifier. The rheological properties of the aqueous dispersions of epoxy oligomers were investigated as well.


2003 ◽  
Vol 57 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Sasa Zlatkovic ◽  
Goran Nikolic ◽  
Jakov Stamenkovic

Unmodified epoxy resin GY250 was crosslinked by the cycloaliphatic polyamino hardener HY847 and polyamidamine hardener HY848 in the different mass ratios. The degree of crosslinking of the epoxy resin and the quantity of unreacted epoxy groups were determined by a spectroscopic FTIR method. The optimal time of complete crosslinking, as a criterion of the degree, was determined by measuring the film hardness indirectly (JUS H.C8.055). The optimal stoichiometric ratio of 100:18:32 (GY250:HY847:HY848) was defined by correlating parameters which directly depend on the degree of crosslinking and the period of application of the epoxy resins, as a prerequisite for forming 2-component epoxy systems which are comparatively more elastic adhesive and waterproof.


Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


Author(s):  
K. Chien ◽  
R.L. Van de Velde ◽  
R.C. Heusser

Sectioning quality of epoxy resins can be improved by the addition of a 1% silicone 200 fluid (Dow Corning), however this produces a softer block. To compensate, a harder plastic has been used for embedding various tissues encountered in our pathology laboratory. Exact amounts of the plastic mixture can be directly made up for embedding as shown: The chart reveals a Poly/Bed 812 (WPE 145) to anhydride ratio of 1:0.7 and a NMA to DDSA ratio of 7:3. 1% silicone fluid is added to above mixtures.Due to impurities within the DDSA and NMA, the polymerized epoxy blocks vary in darkness and appear to affect sectioning quality. After discussing this problem with Polysciences Inc., they have agreed to purify their anhydrides in an effort to standardize the consistency of the plastic.


Sign in / Sign up

Export Citation Format

Share Document