Estimation of solutions of the Navier-Stokes and energy equations for oil flow through the gap of a journal bearing

Wear ◽  
1980 ◽  
Vol 58 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Krzysztof Wierzcholski
Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


Author(s):  
L Jeddi ◽  
M El Khlifi ◽  
D Bonneau

A numerical procedure is developed for the analysis of thermohydrodynamic behaviour of the hydrodynamic (HD) flow in the groove of a journal bearing. The Navier-Stokes and energy equations are written in terms of the primitive variables u, v, p, and T and solved simultaneously using the incremental load method and the finite element formulation. The numerical model is applied to the analysis of the velocities, the pressure, and the temperature patterns that characterize the lubricant flow in the HD groove. The effects of the runner velocity and the feeding pressure are investigated.


1973 ◽  
Vol 95 (4) ◽  
pp. 546-552 ◽  
Author(s):  
G. R. Kulkarni

Oil feed rate is an important parameter governing the operating characteristics of a journal bearing. In the present paper investigation is carried out to explore the effect of oil groove location and supply pressure on the oil feed rate to the bearing. These results are further used to get variation in Sommerfeld number and attitude angle for different oil groove locations and supply pressures. The results indicate that oil groove location has a great influence on oil feed rate to the bearing. It is also observed that oil supply arrangement does not have a significant influence on Sommerfeld number and attitude angle.


Author(s):  
M. Raisee ◽  
M. Shahraeeni

This paper discusses laminar mixed convection of air flow through vertical tubes. Calculations were performed by solving the Navier-Stokes and energy equations for a number of heating lengths. The Reynolds number based on the fluid bulk velocity and diameter of the tube is Re = 500 and Grashof number based on wall heat flux is Gr = 106. The numerical results have been obtained using a finite-volume code which solves the governing equations in axi-symmetric coordinate system. The pressure field is obtained with the SIMPLE algorithm. The HYBRID scheme is used for the convective terms. The computer code was validated by comparing its predictions with the reported analytical, numerical and experimental results. For various heating lengths the values of Nusselt number and friction coefficient are presented and the effects of heating length on these parameters are studied. It was found that for the buoyancy-aided convection, the velocity in the vicinity of the wall increases while decreases in the core region. These result in an enhancement of wall heat transfer coefficient.


Author(s):  
Sandeep Soni ◽  
DP Vakharia

This paper analyses the steady-state performance behaviour of a new type of journal bearing, i.e. the non-circular cylindrical floating ring journal bearing. It consists of a floating ring in between the shaft and the upper and lower lobes of a two-lobe bearing. The journal and the inner surface of the ring are cylindrical while bearing surfaces are non-circular. The classical Navier–Stokes equations in the modified form together with the continuity equation are being solved by the finite element method. The cylindrical coordinates form of the Navier–Stokes equation and continuity equation are used in the present analysis to compute the important proposed bearing characteristics. In this analytical study, the finite bearing approximation ( L/ D=1) with a C2/ C1 value of 0.70 and 1.30 are being used to simulate the behaviour of non-circular cylindrical floating ring journal bearing. The Reynold’s boundary condition is used to enumerate the performance of the proposed bearing. In the present analysis, the steady-state parameters in terms of an inner and outer film eccentricity ratio, a speed ratio, attitude angle, load capacity, friction coefficient parameter, axial oil flow and rise in temperature variable are determined. The results reveal that the steady-state performance of the non-circular floating ring journal bearing is superior to a plain cylindrical floating ring journal bearing.


2020 ◽  
Vol 22 (4) ◽  
pp. 1439-1452
Author(s):  
Mohamed L. Benlekkam ◽  
Driss Nehari ◽  
Habib Y. Madani

AbstractThe temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier–Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 27
Author(s):  
Nattakarn Numpanviwat ◽  
Pearanat Chuchard

The semi-analytical solution for transient electroosmotic flow through elliptic cylindrical microchannels is derived from the Navier-Stokes equations using the Laplace transform. The electroosmotic force expressed by the linearized Poisson-Boltzmann equation is considered the external force in the Navier-Stokes equations. The velocity field solution is obtained in the form of the Mathieu and modified Mathieu functions and it is capable of describing the flow behavior in the system when the boundary condition is either constant or varied. The fluid velocity is calculated numerically using the inverse Laplace transform in order to describe the transient behavior. Moreover, the flow rates and the relative errors on the flow rates are presented to investigate the effect of eccentricity of the elliptic cross-section. The investigation shows that, when the area of the channel cross-sections is fixed, the relative errors are less than 1% if the eccentricity is not greater than 0.5. As a result, an elliptic channel with the eccentricity not greater than 0.5 can be assumed to be circular when the solution is written in the form of trigonometric functions in order to avoid the difficulty in computing the Mathieu and modified Mathieu functions.


Author(s):  
James Tyacke ◽  
Richard Jefferson-Loveday ◽  
Paul Tucker

Nine Large Eddy Simulation (LES) methods are used to simulate flow through two labyrinth seal geometries and are compared with a wide range of Reynolds-Averaged Navier-Stokes (RANS) solutions. These involve one-equation, two-equation and Reynolds Stress RANS models. Also applied are linear and nonlinear pure LES models, hybrid RANS-Numerical-LES (RANS-NLES) and Numerical-LES (NLES). RANS is found to have a maximum error and a scatter of 20%. A similar level of scatter is also found among the same turbulence model implemented in different codes. In a design context, this makes RANS unusable as a final solution. Results show that LES and RANS-NLES is capable of accurately predicting flow behaviour of two seals with a scatter of less than 5%. The complex flow physics gives rise to both laminar and turbulent zones making most LES models inappropriate. Nonetheless, this is found to have minimal tangible results impact. In accord with experimental observations, the ability of LES to find multiple solutions due to solution non-uniqueness is also observed.


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

Flow boiling through microchannels is characterized by nucleation of vapor bubbles on the channel walls and their rapid growth as they fill the entire channel cross-section. In parallel microchannels connected through a common header, formation of vapor bubbles often results in flow maldistribution that leads to reversed flow in certain channels. The reversed flow is detrimental to the heat transfer and leads to early CHF condition. One way of eliminating the reversed flow is to incorporate flow restrictions at the channel inlet. In the present numerical study, a nucleating vapor bubble placed near the restricted end of a microchannel is numerically simulated. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid-vapor interface is captured using the level set technique. The results show that with no restriction the bubble moves towards the nearest channel outlet, whereas in the presence of a restriction, the bubble moves towards the distant but unrestricted end. It is proposed that channels with increasing cross-sectional area may be used to promote unidirectional growth of the vapor plugs and prevent reversed flow.


Author(s):  
A. Agrawal ◽  
G. Biswas ◽  
S. W. J. Welch ◽  
F. Durst

The bubble formation and heat transfer on a horizontal surface have been numerically analyzed using a volume of fluid (VOF) based interface tracking method incorporated into a complete solution of the Navier-Stokes and the thermal energy equations. The numerical method took into account the effects of surface tension, the interface mass transfer and the corresponding latent heat. The computations demonstrated capability of the algorithm in generating quantitative information on unsteady periodic bubble release patterns and on the spatially and temporally varying film thickness. The computations also predict the transport coefficients on the horizontal surface.


Sign in / Sign up

Export Citation Format

Share Document