Acquired immunological tolerance in aged mice III. The contribution of lymphoid cells and their environments to the age related resistance to tolerance induction

1985 ◽  
Vol 30 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Gail S. Habicht
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3566-3566
Author(s):  
Dullei Min ◽  
Brile Chung ◽  
Jing Huang ◽  
Atul Butte ◽  
Kenneth I. Weinberg

Abstract Age-related thymic involution contributes to severe and clinically significant immune deficiency in the elderly. Proposed mechanisms of age-related thymic involution have focused on either intrinsic defects of lymphohematopoietic progenitors or primary defects of the thymic microenvironment with aging. Previously, we have demonstrated that keratinocyte growth factor (KGF) transiently reverses murine age-related thymic involution by regenerating the TEC compartment. We sought to understand the mechanisms of age-related loss of TECs and to evaluate a potential therapeutic strategy to durably regenerate the thymus. We found a significant increase in the frequency of apoptotic TECs (CD45- MHCII+) coupled with a decline in the frequency of S-phase TECs in young versus aged mice (11 vs 19% and 35% vs 17%, respectively). Telomere shortening was observed in both aged thymocytes and thymic stromal cells, indicating increased replicative senescence in both compartments. Previous studies have demonstrated lack of age-related thymic involution in Fas−/− mice. We found that the frequency of Fas+ TECs was 3-fold higher in aged mice compared to young mice. A distinct TEC subpopulation expressed Fas, but there was no increase in Fas+ CD45+ lymphoid cells. Although FasL was not expressed by thymocytes, expression of FasL by intrathymic mature T cells (ITMTs, CD4+CD8−CD44high or CD4−CD8+CD44high) increased 2-fold in aged mice. In contrast, there was no change in the frequency of FasL+ splenic memory T cells. To understand how Fas expression is induced in aged TEC, we examined the effects of two pro-inflammatory cytokines, TNF-α and IL-1β, which are known to induce Fas expression. Both TNF-α and IL-1β up-regulated Fas expression on K5+K8+ (possible precursor), K5−K8+ (cortical), or K5+K8− (medullary) TEC clones derived from young mice. RT-PCR and FACS analyses showed that the aged thymus had 4–5-fold higher levels of TNF-α, and TNF-α expression was increased in aged CD4+ and CD8+ ITMT, as well as all subsets of thymocytes. To elucidate the molecular mechanisms of apoptosis in the aged TEC, we analyzed levels of activated caspase-8, a key mediator of TNFR/Fas-induced apoptosis. Almost 50% of TECs in aged mice but only 25% in young mice had activated caspase-8. Furthermore, in vivo treatment (0.4mg/mouse, every 3rd day for 1 month) of a caspase-8-specific inhibitor (z-IETD-fmk) increased the number of TECs, decreased TEC apoptosis, and enhanced thymopoiesis in aged mice. The data suggest that thymic aging is mediated by decreased regenerative potential of TEC coupled with increased expression of inflammatory cytokines by both ITMT and thymocytes that make TECs more susceptible to apoptosis by either inducing Fas expression on TECs or directly triggering TNFR-mediated apoptosis. The inflammatory effects of ITMT on TEC death provides a feed-forward mechanism by which peripheral memory T-cell generation and immune senescence is linked to thymic involution.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1043-1043
Author(s):  
Jarrod A Dudakov ◽  
Alan M Hanash ◽  
Natalie V Singer ◽  
Mallory L West ◽  
Lauren F. Young ◽  
...  

Abstract Abstract 1043 Thymopoiesis is a highly complex process involving cross-talk interactions between developing thymocytes and the supporting non-hematopoietic stromal microenvironment, which includes highly specialized thymic epithelial cells (TECs). Paradoxical to its importance for continually generating a diverse repertoire for effective adaptive immunity, the thymus undergoes profound atrophy with age. Age-related thymic involution is characterized by severe structural dysregulation of the supporting epithelial microenvironment (and in humans linked to a buildup of fatty tissue), reduced thymopoiesis, and subsequently reduced export of na•ve lymphocytes into the periphery. Together this degeneration in thymic function significantly narrows the T cell receptor repertoire and can causally linked to increased infection, autoimmunity and malignancy. Moreover, progressive thymic involution can also be a considerable hindrance to the regeneration of adaptive immunity following cytoreductive treatments such as chemotherapy or the conditioning required for successful hematopoietic stem cell transplant. Despite considerable work, little is understood about the underlying causes of age-related thymic involution. We have recently demonstrated a novel role for interleukin-22 (IL-22), a recently identified cytokine predominantly associated with maintenance of barrier function at mucosal surfaces, in endogenous thymic regeneration from acute immune injury. Our studies suggested that 1) the depletion of DP thymocytes triggers, 2) upregulation of IL-23 by dendritic cells (DCs), which induces 3) the production of IL-22 by intrathymic innate lymphoid cells (ILCs). IL-22 promotes the proliferation and survival of TECs, therefore this cascade of events leads to regeneration of the supporting microenvironment and, ultimately, to rejuvenation of thymopoiesis. Given these recent findings demonstrating a role for IL-22 in endogenous thymic regeneration following acute immune injury, one hypothesis would be that a breakdown in the IL-22 pathway contributes towards chronic age-related thymus involution. However, in contrast to this initial hypothesis, our studies revealed that rather than being depleted with age, there was actually a significant increase in the level of intrathymic IL-22 in aged (18+ months old) compared to young (2 months old) mice (Figure 1a). These findings highlighted that, in addition to being triggered by the depletion of CD4+CD8+ double positive thymocytes during acute immune injury, the IL-22 regenerative pathway can also be activated by the chronic atrophy that is a hallmark of age-related thymic involution. Similar to our findings in models of thymic injury in young mice, we found that these increased levels of IL-22 with age were predicated on the increased production of IL-22 by thymic innate lymphoid cells (Figure 1b). Moreover, in keeping with our findings in young mice with acute thymic injury, intrathymic levels of IL-22 in aged mice correlated with those of IL-23 - production of which by dendritic cells was significantly increased with age (Figure 1c). As predicted by this increase in the production of IL-22 with age, TECs from aged mice displayed all the hallmarks of increased IL-22 signaling including increased expression of the IL-22 receptor (Figure 1d) as well as increased phosphorylation of STAT-3 (Y705) (Figure 1e). However, although in vitro incubation of aged TECs with IL-22 led to increased proliferation, consistent with our findings in young mice, in vivo analysis revealed significantly reduced proliferation among TECs in aged mice (Figure 1f), as has been previously reported. Given the role for inflammasome components in mediating thymic involution, it is possible that although endogenous regenerative pathways are triggered with age (in the case of IL-22 likely due to the depletion of DP thymocytes), these regular processes fail in the face of an overwhelming inflammatory milieu in the thymus with age. Although further studies need to elucidate the specific inhibitory interactions constraining thymic regeneration, it is clear that strategies harnessing these endogenous pathways for enhancing immunity in the aging thymus first need to overcome these negative stimuli for effective regeneration. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miwa Nahata ◽  
Sachiko Mogami ◽  
Hitomi Sekine ◽  
Seiichi Iizuka ◽  
Naoto Okubo ◽  
...  

AbstractChronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 173 ◽  
Author(s):  
Wassim Fhayli ◽  
Quentin Boëté ◽  
Nadjib Kihal ◽  
Valérie Cenizo ◽  
Pascal Sommer ◽  
...  

Elastic fibers (90% elastin, 10% fibrillin-rich microfibrils) are synthesized only in early life and adolescence mainly by the vascular smooth muscle cells through the cross-linking of its soluble precursor, tropoelastin. Elastic fibers endow the large elastic arteries with resilience and elasticity. Normal vascular aging is associated with arterial remodeling and stiffening, especially due to the end of production and degradation of elastic fibers, leading to altered cardiovascular function. Several pharmacological treatments stimulate the production of elastin and elastic fibers. In particular, dill extract (DE) has been demonstrated to stimulate elastin production in vitro in dermal equivalent models and in skin fibroblasts to increase lysyl oxidase–like-1 (LOXL-1) gene expression, an enzyme contributing to tropoelastin crosslinking and elastin formation. Here, we have investigated the effects of a chronic treatment (three months) of aged male mice with DE (5% or 10% v/v, in drinking water) on the structure and function of the ascending aorta. DE treatment, especially at 10%, of aged mice protected pre-existing elastic lamellae, reactivated tropoelastin and LOXL-1 expressions, induced elastic fiber neo-synthesis, and decreased the stiffness of the aging aortic wall, probably explaining the reversal of the age-related cardiac hypertrophy also observed following the treatment. DE could thus be considered as an anti-aging product for the cardiovascular system.


2009 ◽  
Vol 30 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Luis Rodriguez-Menocal ◽  
Si M. Pham ◽  
Dania Mateu ◽  
Melissa St-Pierre ◽  
Yuntao Wei ◽  
...  

Alteration of VSMC (vascular smooth-muscle cell) physiology is associated with the development of atherosclerosis and restenosis. We hypothesize that aging up-regulates the expression of p16INK4a in VSMCs, which may increase the susceptibility of blood vessels to vascular occlusive diseases. Aortic VSMCs were obtained from young and aged mice. Cells from aged mice grew more slowly than those from their younger counterparts. Progression of cell cycle in response to serum stimulation was significantly inhibited in those cells with aging, as determined by FACS after propidium iodide staining. A significant up-regulation of p16INK4a (2.5-fold, P=0.0012) was found in VSMC from aged animals using gene arrays. The up-regulation of this gene was further confirmed by quantitative RT–PCR (reverse transcription–PCR) and Western-blot experiments. Immunostaining for p16INK4a confirmed that aortas from aged mice contained more p16INK4a+ SMA (smooth-muscle cell actin)+ cells than aortas from young animals (26.79±2.45 versus 7.06±1.44, P=0.00027, n=4). In conclusion, we have shown that aging up-regulates the expression of p16INK4a in VSMC in both cultures and arteries. The increase in p16INK4a in the vasculature with aging may modify VSMC's response to post-injury stress and therefore accelerate the development of age-related cardiovascular diseases.


2021 ◽  
Author(s):  
Christine Maria Krammer ◽  
Bishan Yang ◽  
Sabrina Reichl ◽  
Verena Bolini ◽  
Corinna Schulte ◽  
...  

Atherosclerosis is a lipid-triggered chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. Pathogenesis is age-dependent, but the mechanistic links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating atherogenic monocyte and T-cell recruitment, amplifying lesional inflammation, and suppressing atheroprotective B-cell responses. However, age-related links between atherogenesis and MIF and its role in advanced atherosclerosis in aged mice have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. While a regio-specific atheroprotective phenotype of Mif-deficiency was observed in the 30/24-week-old group, atheroprotection was not detected in the 48/42- and 52/6-week-old groups, suggesting that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. We identify a combination of mechanisms that could explain this phenotype: i) Mif-deficiency promotes lesional Trem2+ macrophage numbers in younger but not aged mice; ii) Mif-deficiency favors formation of lymphocyte-rich stage-I/II ATLOs in younger mice but ATLO numbers equalize with those in Apoe-/- controls in the older mice; and iii) plasma anti-oxLDL-IgM antibody levels are decreased in aged Mif-deficient mice. Of note, these three markers (Trem2+ macrophages, ATLOs, anti-oxLDL-IgM antibodies) have been previously linked to atheroprotection. Together, our study thus suggests that regio-specific atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is lost upon advanced aging and identifies mechanisms that could explain this phenotype shift. These observations may have implications for translational MIF-directed strategies.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Anjali Chauhan ◽  
Jacob Hudobenko ◽  
Anthony Patrizz ◽  
Louise D McCullough

Introduction: GDF 11 is a member of the transforming growth factor β superfamily. Loss of GDF11 occurs with aging and declining levels correlate with several detrimental age-associated phenotypes in both peripheral tissues and brain. Restoration of GDF11 enhances neurogenesis and cognitive function in aged mice. Brain expression of GDF11 has not been investigated after stroke. Stroke differentially affects the elderly. In this work we examined the role of GDF11 in aging, stroke and its potential utility as a neuroprotective agent. Methods: Male C57/BL6NCrl young (2-3 months) and aged (19-21) mice were used. Brain GDF11 expression was evaluated in young and aged mice by western blot. Focal ischemia was induced with a transient middle cerebral artery occlusion (MCAO). Mice were randomly assigned into two groups and were subjected to 90 min MCAO. Group 1 received vehicle (phosphate buffered saline) and group 2 was administered rGDF11 (100 ug/kg., ip) at the onset of ischemia. In additional experiments, the efficacy of delayed treatment (3 h after ischemia) with rGDF11 was tested. These mice were subjected to a 60 min MCAO. Mice were euthanized after 24 hours and 7 days respectively and brains were harvested to estimate infarct area. Results: A significant decrease in brain GDF11 levels was observed in aged mice as compared to young (p<0.05). Additionally, a significant decline in brain GDF11 expression was observed after stroke at 24 hours vs. sham groups (p<0.05). A significant decrease in cortical and hemispheric infarct area was observed in the rGDF11 group (cortical 48.73±1.05; hemisphere 49.68±3.58) as compared to vehicle group (60.54±4.88; 61.35±6.03), when GDF was administered at the time of ischemia. Delayed treatment with rGDF11 also reduced infarct at 7 days. Conclusions: Brain GDF11 levels decline with age and after stroke. Supplementation with rGDF11 ameliorates stroke induced injury in young mice at 24h and 7 days. These finding suggest potential role of GDF11 in age and stroke. Restoration of age-related loss of GDF may be a viable therapy for stroke.


Sign in / Sign up

Export Citation Format

Share Document