Quantitation of preproenkephalin mRNA levels in brain regions from male Fischer rats following chronic cocaine treatment using a recently developed solution hybridization assay

1992 ◽  
Vol 14 (3) ◽  
pp. 231-238 ◽  
Author(s):  
Andrea D. Branch ◽  
Ellen M. Unterwald ◽  
Susan E. Lee ◽  
Mary Jeanne Kreek
2002 ◽  
Vol 66 (2) ◽  
pp. 443-448 ◽  
Author(s):  
Anahit V. Azaryan ◽  
Linda J. Coughlin ◽  
Beáta Búzás ◽  
Barbara J. Clock ◽  
Brian M. Cox

2021 ◽  
pp. 154596832110063
Author(s):  
Keigo Tamakoshi ◽  
Madoka Maeda ◽  
Shinnosuke Nakamura ◽  
Nae Murohashi

Background Very early exercise has been reported to exacerbate motor dysfunction; however, its mechanism is largely unknown. Objective This study examined the effect of very early exercise on motor recovery and associated brain damage following intracerebral hemorrhage (ICH) in rats. Methods Collagenase solution was injected into the left striatum to induce ICH. Rats were randomly assigned to receive placebo surgery without exercise (SHAM) or ICH without (ICH) or with very early exercise within 24 hours of surgery (ICH+VET). We observed sensorimotor behaviors before surgery, and after surgery preexercise and postexercise. Postexercise brain tissue was collected 27 hours after surgery to investigate the hematoma area, brain edema, and Il1b, Tgfb1, and Igf1 mRNA levels in the striatum and sensorimotor cortex using real-time reverse transcription polymerase chain reaction. NeuN, PSD95, and GFAP protein expression was analyzed by Western blotting. Results We observed significantly increased skillful sensorimotor impairment in the horizontal ladder test and significantly higher Il1b mRNA levels in the striatum of the ICH+VET group compared with the ICH group. NeuN protein expression was significantly reduced in both brain regions of the ICH+VET group compared with the SHAM group. Conclusion Our results suggest that very early exercise may be associated with an exacerbation of motor dysfunction because of increased neuronal death and region-specific changes in inflammatory factors. These results indicate that implementing exercise within 24 hours after ICH should be performed with caution.


2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


2015 ◽  
Vol 40 (13) ◽  
pp. 2960-2968 ◽  
Author(s):  
Suchismita Ray ◽  
Margaret Haney ◽  
Catherine Hanson ◽  
Bharat Biswal ◽  
Stephen José Hanson

1997 ◽  
Vol 42 (6) ◽  
pp. 463-467 ◽  
Author(s):  
Dave Gayle ◽  
Sergey E. Ilyin ◽  
Carlos R. Plata-Salamán

2021 ◽  
Vol 15 ◽  
Author(s):  
Chiso Nwokafor ◽  
Lidia I. Serova ◽  
Arax Tanelian ◽  
Roxanna J. Nahvi ◽  
Esther L. Sabban

The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.


2021 ◽  
Author(s):  
Daniel J Tobiansky ◽  
George V Kachkovski ◽  
Reilly T Enos ◽  
Kim L Schmidt ◽  
E. Angela Murphy ◽  
...  

Maternal diets can have dramatic effects on the physiology, metabolism, and behaviour of offspring that persist into adulthood. However, the effects of maternal sucrose consumption on offspring remain unclear. Here, female rats were fed either a sucrose diet with a human-relevant level of sucrose (25% of kcal) or a macronutrient-matched, isocaloric control diet before, during, and after pregnancy. After weaning, all offspring were fed a standard low-sucrose rodent chow. We measured indicators of metabolism (weight, adipose, glucose tolerance, liver lipids) during development and adulthood (16-24 wk). We also measured food preference and motivation for sugar rewards in adulthood. Finally, in brain regions regulating these behaviours, we measured steroids and transcripts for steroidogenic enzymes, steroid receptors, and dopamine receptors. In male offspring, maternal sucrose intake decreased body mass and visceral adipose, increased preference for high-sucrose and high-fat diets, increased motivation for sugar rewards, and decreased mRNA levels of Cyp17a1 (an androgenic enzyme) in the nucleus accumbens. In female offspring, maternal sucrose intake increased basal corticosterone levels. These data demonstrate the profound, enduring, diverse, and sex-specific effects of maternal sucrose consumption on offspring phenotype.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


Sign in / Sign up

Export Citation Format

Share Document