Effects of concanavalin a and cholera toxin on epidermal cAMP and migration rate during wound closure in adult newts

Author(s):  
Donald J. Donaldson ◽  
Mary K. Dunlap ◽  
James T. Mahan
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


2018 ◽  
Vol 17 (4) ◽  
pp. 1247-1259 ◽  
Author(s):  
Agata Kabała-Dzik ◽  
Anna Rzepecka-Stojko ◽  
Robert Kubina ◽  
Robert Dariusz Wojtyczka ◽  
Ewa Buszman ◽  
...  

Epithelium mammary carcinoma is a cancer with a high death rate among women. One factor having a significant impact on metastasis is cell migration. The aim of this study was to compare migration rate inhibition of caffeic acid (CA) and its phenethyl ester (CAPE) on MCF-7 breast cancer cells. Microscopic evaluation was used to determine the morphology of carcinoma cells, before and after 24-hour treatment with CA and CAPE using a dose of 50 µM. The cytotoxic effect was measured by XTT-NR-SRB assay (tetrazolium hydroxide-neutral red-Sulforhodamine B) for 24-hour and 48-hour periods, using CA and CAPE, with doses of 50 and 100 µM. These doses were used to determine cell migration inhibition using a wound closure assay for 0-hour, 8-hour, 16-hour, and 24-hour periods. Both CA and CAPE treatments displayed cytotoxic activity in a dose- and time-dependent trend. CAPE displayed IC50 values more than twice as low as CA. IC50 values for the XTT assay were as follows: CA was 102.98 µM for 24 hours and 59.12 µM for 48 hours, while CAPE was 56.39 µM for 24 hours and 28.10 µM for 48 hours. For the NR assay: CA was 84.87 µM at 24 hours and 65.05 µM at 48 hours, while CAPE was 69.05 µM at 24 hours and 29.05 µM at 48 hours. For the SRB assay: At 24 hours, CA was 83.47 µM and 53.46 µM at 48 hours, while CAPE was 38.53 µM at 24 hours and 20.15 µM at 48 hours. Both polyphenols induced migration inhibition, resulting in practically halting the wound closure. CAPE produced better results than CA with the same doses and experiment times, though both CA and CAPE displayed cytotoxic activity against MCF-7 cells, as well as inhibited migration.


2019 ◽  
Vol 30 (21) ◽  
pp. 2651-2658
Author(s):  
Chan-wool Lee ◽  
Young-Chang Kwon ◽  
Youngbin Lee ◽  
Min-Yoon Park ◽  
Kwang-Min Choe

Wound closure in the Drosophila larval epidermis mainly involves nonproliferative, endocyling epithelial cells. Consequently, it is largely mediated by cell growth and migration. We discovered that both cell growth and migration in Drosophila require the cochaperone-encoding gene cdc37. Larvae lacking cdc37 in the epidermis failed to close wounds, and the cells of the epidermis failed to change cell shape and polarize. Likewise, wound-induced cell growth was significantly reduced, and correlated with a reduction in the size of the cell nucleus. The c-Jun N-terminal kinase (JNK) pathway, which is essential for wound closure, was not typically activated in injured cdc37 knockdown larvae. In addition, JNK, Hep, Mkk4, and Tak1 protein levels were reduced, consistent with previous reports showing that Cdc37 is important for the stability of various client kinases. Protein levels of the integrin β subunit and its wound-induced protein expression were also reduced, reflecting the disruption of JNK activation, which is crucial for expression of integrin β during wound closure. These results are consistent with a role of Cdc37 in maintaining the stability of the JNK pathway kinases, thus mediating cell growth and migration during Drosophila wound healing.


1983 ◽  
Vol 71 ◽  
pp. 343-361
Author(s):  
S. Catalano

ABSTRACTThis review presents a summary of observed photospheric phenomena on RS CVn stars: the amplitude, shape, evolution and migration rate of the photometric wave in relation to the rotational and orbital motion.The main points considered are: 1) the activity level (maximum amplitude, short and long timescale variability) versus rotation period; 2) the activity cycles as inferred from changes in the wave migration rate and direction and from the variation of its amplitude; 3) the detection of differential rotation; 4) the connection between the orbital period variation and activity.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1595 ◽  
Author(s):  
Sungjoo Park ◽  
Eunsu Ko ◽  
Jun Hyoung Lee ◽  
Yoseb Song ◽  
Chang-Hao Cui ◽  
...  

Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4035-4043 ◽  
Author(s):  
Brian J. Rybarczyk ◽  
Sarah O. Lawrence ◽  
Patricia J. Simpson-Haidaris

AbstractFibrinogen (FBG) assembles into matrix fibrils of fibroblasts, lung and mammary epithelial cells, but not endothelial cells. Furthermore, cryptic β15-21 residues are exposed in FBG fibrils with no evidence of thrombin or plasmin proteolysis. Herein, the effects of FBG on migration and proliferation of wounded dermal fibroblasts were investigated. FBG preassembled into matrix prior to scrape-wounding induced 3H-thymidine incorporation 8-fold and shortened the time to wound closure 1.6-fold ± 0.1-fold. FBG added immediately after wounding did not enhance either response. Fibroblast growth factor-2/platelet-derived growth factor (FGF-2/PDGF) stimulated cell proliferation 2.2-fold for FGF-2 and 3.2-fold for PDGF and wound closure 1.5-fold ± 0.1-fold in the absence of matrix-FBG. Surprisingly, exogenous growth factors had negligible effect on wound closure and cell proliferation already enhanced by matrix-FBG. Matrix-FBG-enhanced wound closure required active assembly of an FBG-fibronectin matrix, engagement of αvβ3, and FBG Aα-RGDS572-575 integrin recognition sites; Aα-RGDF95-98 sites were not sufficient for matrix-FBG assembly, enhanced wound closure, or cell proliferation. Although Bβ1-42 was not necessary for matrix assembly, it was required for matrix-FBG-enhanced cell migration. These data indicate that FBG serves as an important matrix constituent in the absence of fibrin formation to enhance wound repair and implicate Bβ1-42 as a physiologic inducer of signal transduction to promote an intermediate state of cell adhesion and a migratory cell phenotype. (Blood. 2003;102:4035-4043)


1990 ◽  
Vol 205 ◽  
Author(s):  
R.S. May ◽  
B. Evans

AbstractIn situ observations of CIGM in CaCO3 bicrystals with a SrCO3 solute source were made. The change in boundary orientation and migration rate were compared with solute concentration. The liquid film model for coherency strain Induced migration was generalized to any non-cubic system and applied to CaCO3-SrCO3. The coherent layer was modeled as a thin film on an infinite half-space. The strain energy was found from solution of the Hooke's law expressions transformed to the appropriate coordinate system. For triclinic or monoclinic films the strain tensor was found by an eigenvector decomposition of the transformation matrix that defined the lattice parameter change with composition. High anisotropy of Vegard's law constants for CaCO3-SrCO3 caused (111) to have the lowest coherency strain per unit solute. Surfaces perpendicular to (111) in coherent equilibria were predicted to have half the solute concentration and three times the migration driving force of those perpendicular to (111). However, no correlation between solute concentration and boundary orientation was observed. Ambiguous and contradictory evidence for a relationship between solute concentration, boundary orientation, and migration rate was found. The self-stress state of a grain boundary in a solute diffusion field may be better modelled as hydrostatic rather than plane stress. Hydrostatic compression may interact with the boundary excess volume and cause a PV driving force for migration. Predictions based on coherent equilibrium at a surface have not been tested for that geometry in calcite; they should be tested before they are applied to grain boundaries.


2013 ◽  
Vol 203 (4) ◽  
pp. 691-709 ◽  
Author(s):  
Kai Safferling ◽  
Thomas Sütterlin ◽  
Kathi Westphal ◽  
Claudia Ernst ◽  
Kai Breuhahn ◽  
...  

Wound healing is a complex process in which a tissue’s individual cells have to be orchestrated in an efficient and robust way. We integrated multiplex protein analysis, immunohistochemical analysis, and whole-slide imaging into a novel medium-throughput platform for quantitatively capturing proliferation, differentiation, and migration in large numbers of organotypic skin cultures comprising epidermis and dermis. Using fluorescent time-lag staining, we were able to infer source and final destination of keratinocytes in the healing epidermis. This resulted in a novel extending shield reepithelialization mechanism, which we confirmed by computational multicellular modeling and perturbation of tongue extension. This work provides a consistent experimental and theoretical model for epidermal wound closure in 3D, negating the previously proposed concepts of epidermal tongue extension and highlighting the so far underestimated role of the surrounding tissue. Based on our findings, epidermal wound closure is a process in which cell behavior is orchestrated by a higher level of tissue control that 2D monolayer assays are not able to capture.


2014 ◽  
Vol 80 (3) ◽  
pp. 533-534 ◽  
Author(s):  
Lorenzo Fuccio ◽  
Gabriele Lami ◽  
Alessandra Guido ◽  
Carlo Fabbri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document