Abundances of the Chemical Elements in the Main Rock Types of the Lithosphere in Relation to a System of Correlations

Author(s):  
E. SCHROLL
Keyword(s):  
2021 ◽  
Author(s):  
Adil Binal ◽  
Aylin Sel

Abstract Bacterial weathering plays a significant role in rock weathering, yet only a limited number of studies was conducted on this topic. The recent rapid developments in geomicrobiology are expected to increase the pace of research in this area. The extent and duration of the biological weathering processes on mineral and rock samples and minerals preferred by bacteria are still not fully understood due to the wide variety of both bacterial species and rock types. Biological weathering of rock types found in Turkey has also not been studied before. Here, we investigated the effects of two species of bacteria actively contributing to rock weathering on three rock types commonly used as building stone materials in Turkey. Granite, andesite, and limestone samples could interact with Bacillus species (B. subtilis and B. pumilus) in closed system reactors. Samples obtained from these reactors were analysed via Scanning Electron Microscopy (SEM) monitoring to identify morphological features and chemical composition changes. Chemical elements consumed most by bacteria were identified. Changes in the colour index were determined via RGB measurements. The effects of experimental conditions on bacterial growth were monitored via daily optical density measurements. The effects of bacteria on the physical properties of rock samples were also evaluated. B. subtilis and B. pumilus were found to be more aggressive on limestone/andesite and granite, respectively.


2020 ◽  
Vol 31 (2) ◽  
pp. 24-27
Author(s):  
Asep Rohiman ◽  
Agus Saiful Arifin

The composition of chemical elements in rock samples can be used as a tool for classifying rock types, predicting the depositional environment, rock age, and the tectonic environment in which the rock is formed. X-Ray Fluorescence (XRF) is one of the instruments used to analyze rock samples. The advantage of using XRF analysis is that the analysis process can be done more quickly, easily, accurately, and does not damage the sample. However, before measurements are made using the XRF instrument it needs to be supported by an appropriate sample preparation process. In this study, optimal conditions in the standard (CRM) rock sample preparation of GBW 07105 and JR-1 have been studied. The parameters studied were variations in the composition ratio of Cellulose Mycro Crystalin (CMC) with standard (CRM) samples, namely 1: 4 and 1: 3. The technique of mixing the sample is done by using a mortar grinder and a shaker. Optimization of sample preparation was carried out using pressed powder pellet and fused glass bead techniques. Based on the data obtained from the analysis results the best ratio of binders to standard samples is 1: 3. The pressed powder pellet preparation technique is the best technique in analyzing samples using the X-Ray Fluorescence method. Further studies also need to be carried out to analyze minor elements and traces (REEs).


Author(s):  
John A. Tossell ◽  
David J. Vaughan

In this, the last major chapter of the book, we turn our attention to the applications of modern electronic structure models and concepts to more general geochemical problems; namely, those described by Goldschmidt as being concerned with the “distribution of elements in the geochemical spheres and the laws governing the distribution of the elements” (see Preface). The majority of minerals and rocks originally formed by crystallization from melts, and so the first section of this chapter is devoted to considering the nature of melts (and glasses), structure and bonding in melts, and the partitioning of elements (particularly transition elements) between the melt and crystallizing solid phases. The classic work of Bowen (1928) led to the recognition of particular sequences of crystallization and crystal-melt reaction relationships in the silicate melts from which major rock types form, as enshrined in the “Bowen Reaction Series.” Attempts were also made to explain the incorporation of particular elements into particular mineral structures using simple crystal chemical arguments, notably as laid down in “Goldschmidt’s Rules” (Goldschmidt, 1937). Such concepts are reappraised in the light of modern electronic structure theories. The other major realm of formation of minerals and rocks, and the most important medium of transport and redistribution of the chemical elements at the Earth’s surface, is the aqueous solution. The molecular and electronic structures of aqueous solutions, their behavior at elevated temperatures, formation and stabilities of complexes in solution, and the mechanisms of reactions in solution are all considered in the second section of this chapter. The surfaces of minerals (or other crystalline solids) differ from the bulk material in terms of both crystal structure and electronic structure. A great variety of spectroscopic, diffraction, scanning, and other techniques are now available to study the nature of solid surfaces, and models are being developed to interpret and explain the experimental data. These approaches are discussed with reference to a few examples of oxide and sulfide minerals. Although relatively few studies have been undertaken specifically of the surfaces of minerals, many of the reaction phenomena that occur in natural systems take place at mineral surfaces, so that such surface studies represent an important area of future research.


1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


1886 ◽  
Vol 21 (524supp) ◽  
pp. 8371-8373
Author(s):  
Thomas Jamieson

Author(s):  
Patrick Schukalla

Uranium mining often escapes the attention of debates around the nuclear industries. The chemical elements’ representations are focused on the nuclear reactor. The article explores what I refer to as becoming the nuclear front – the uranium mining frontier’s expansion to Tanzania, its historical entanglements and current state. The geographies of the nuclear industries parallel dominant patterns and the unevenness of the global divisions of labour, resource production and consumption. Clearly related to the developments and expectations in the field of atomic power production, uranium exploration and the gathering of geological knowledge on resource potentiality remains a peripheral realm of the technopolitical perceptions of the nuclear fuel chain. Seen as less spectacular and less associated with high-technology than the better-known elements of the nuclear industry the article thus aims to shine light on the processes that pre-figure uranium mining by looking at the example of Tanzania.


Sign in / Sign up

Export Citation Format

Share Document