Molecular Techniques for Diagnosis of Bacterial Plant Pathogens

Author(s):  
Sakshi Tewari ◽  
Shilpi Sharma
2021 ◽  
Vol 6 (1) ◽  
pp. 153-159
Author(s):  
E.O Akinyelure ◽  
◽  
D.A. Machido ◽  
H. I. Atta

Bacillus thuringiensis (Bt) is the organism that is used most frequently in biological pest management, which is distinguished by the capacity to possess crystalline inclusions throughout the sporulation phase. There is an increasing need to use biological control in controlling plant pathogens due to the inherent advantages. However, the detection of Bt has become more time consuming and cumbersome due to the numerous available crystal genes. The goal of the study was to isolate strains of Bacillus thuringiensis from the soil, characterise the isolates using the transcriptional regulator, XRE gene and the crystal proteins cry2gene and compare the efficiency of these two biomarkers in identifying Bt species. Five different Bacillus thuringiensis strains were isolated from soil samples in Zaria, Nigeria. Polymerase chain reaction was used to detect the existence of the cry2 and XRE genes. Four (80%) of the five isolates harboured the XRE genes, while none (0%) harboured the cry2 genes. This observation is a likely indication that the XRE gene is a reliable biomarker in the identification of Bt isolates from environmental samples. In order to ensure speed and reproducibility in the detection of Bt from environmental samples, molecular techniques targeting the XREgene are recommended. Keywords: Bacillus thuringiensis; transcriptional regulator, XRE; crystal protein, cry2


Author(s):  
Liliana Aguilar-Marcelino ◽  
Pedro Mendoza-de-Gives ◽  
Laith Khalil Tawfeeq Al-Ani ◽  
María Eugenia López-Arellano ◽  
Olga Gómez-Rodríguez ◽  
...  

2020 ◽  
Vol 58 (1) ◽  
pp. 277-311 ◽  
Author(s):  
Erin Rosskopf ◽  
Francesco Di Gioia ◽  
Jason C. Hong ◽  
Cristina Pisani ◽  
Nancy Kokalis-Burelle

The loss of methyl bromide as a soil fumigant and minimal advances in the development and registration of new chemical fumigants has resulted in a resurgence of interest in the application of organic amendments (OAs) for soilborne plant pathogen and plant-parasitic nematode management. Significant progress has been made in the characterization of OAs, application of strategies for their use, and elucidation of mechanisms by which they suppress soilborne pests. Nonetheless, their utility is limited by the variability of disease control, expense, and the logistics of introducing them into crop production systems. Recent advances in molecular techniques have led to significant progress in the elucidation of the role of bacteria and fungi and their metabolic products on disease suppression with the addition of OAs. Biosolarization and anaerobic soil disinfestation, developed to manipulate systems and favor beneficial microorganisms to maximize their impact on plant pathogens, are built on a strong historical research foundation in OAs and the physical, chemical, and biological characteristics of disease-suppressive soils. This review focuses on recent applications of OAs and their potential for the management of soilborne plant pathogens and plant-parasitic nematodes, with emphasis primarily on annual fruit and vegetable production systems.


2006 ◽  
Vol 59 ◽  
pp. 132-136 ◽  
Author(s):  
M. Braithwaite ◽  
C.F. Hill ◽  
S. Ganev ◽  
J.M. Pay ◽  
H.G. Pearson ◽  
...  

During 2003 and 2004 fortyfive randomly selected wholesale and retail plant nurseries were surveyed for plant diseases The plant families Agavaceae Annonaceae Arecaceae Bromeliaceae Cycadaceae and Musaceae were targeted Plants were examined in situ for disease symptoms as well as samples being collected for laboratory analyses Fungi were identified using morphological characteristics and where necessary with molecular techniques The survey resulted in a range of fungi being identified from the target plants These fungi ranged from saprophytes to plant pathogens some of which may have undesirable effects on New Zealands biodiversity or economy Many new host/pathogen records were observed and several fungi were detected for the first time in New Zealand This paper presents and discusses the results of these findings


2003 ◽  
Vol 83 (Special Issue) ◽  
pp. 331-336 ◽  
Author(s):  
R. D. Reeleder

The role of biodiversity as it affects the control of soil-borne fungal pathogens is discussed. Soil-borne fungal plant pathogens have often proven difficult to manage with conventional methods of disease control. Nonetheless, researchers have characterized several naturally occurring “disease-suppressive” soils where crop loss from disease is less than would otherwise be expected. Suppressive soils can also result from the incorporation of various amendments into soil. In most cases, disease control in such soils has been shown to be biological in nature; that is, soil organisms appear to directly or indirectly inhibit the development of disease. Increased knowledge of the identity and functioning of these organisms may support the development of techniques that can be used to develop suppressiveness in soils that are otherwise disease-conducive. Populations of pathogens themselves have been shown to exhibit considerable genetic diversity; the ability of populations to respond to disease control measures should be considered when developing a management strategy. New molecular techniques can be exploited to better characterize soil communities, including the pathogens themselves, as well as community responses to various disease control options. The contributions of Canadian researchers to these areas are discussed and models for further study are proposed. Key words: Biocontrol, molecular technologies, functional diversity, integrated pest management


2020 ◽  
Vol 55 (2) ◽  
pp. 161-193
Author(s):  
Hemilse Elena Palmucci ◽  
Silvia Wolcan

Background and aims: The genus Phytophthora includes plant pathogens that affect a wide host range and cause severe damage and economic losses. The aim of this study was to achieve a more comprehensive knowledge of Phytophthora in Argentina. To this end, a review was carried out from the first reports in the late nineteenth century until March 2019. M&M: Information was taken from printed and on-line primary and secondary sources such as Proceedings of National and International Scientific Meetings, Bulletins from National Institutions and Universities, periodical Journals, books and data bases, and then analyzed and categorized. Results: The revision allowed updating the status of Phytophthora species recorded in the country, considering their geographical distribution, groups of crops affected, host-pathogen relationships, symptoms and nomenclature changes, as well as presenting a quick and comparative access to different subjects related to these pathogens. The results showed that, to date, 20 Phytophthora spp., one species affinis and one taxon affect 223 host-pathogen relationships in Argentina. The diversity of Phytophthora species in the world suggests that a larger number of species, still not cited, could be present in Argentina. Conclusions: Researchers specialized in the genus Phytophthora, molecular techniques and phylogenetic studies, may allow progressing in the accurate identification of the species and knowledge of their genetic variability.


1995 ◽  
Author(s):  
Martin B. Dickman ◽  
Oded Yarden

Sclerotinia sclerotiorum (Lib.) de Bary is among the world's most successful and omnivorous fungal plant pathogens. Included in the nearly 400 species of plants reported as hosts to this fungus are canola, alfalfa, soybean, sunflower, dry bean and potato. The general inability to develop resistant germplasm with these economically important crops to this pathogen has focused attention on the need for a more detailed examination of the pathogenic determinants involved in disease development. A mechanistic understanding of the successful strategy(ies) used by S. sclerotiorum in colonizing host plants and their linkage to fungal development may provide targets and/or novel approaches with which to design resistant crop plants. This proposal involved experiments which were successful in generating genetically-engineered plants harboring resistance to S. sclerotiorum, the establishment and improvement of molecular tools for the study of this pathogen and the analysis of the linkage between pathogenicity, sclerotial morphogenesis and two biosynthetic pathways: oxalic acid production and chitin synthesis. The highly collaborative project has improved our understanding of S. sclerotiorum pathogenicity, established reliable molecular techniques to facilitate experimental manipilation and generated transgenic plants which are resistant to this econimically important fungus.


Author(s):  
Ganeshamoorthy Hariharan ◽  
Kandeeparoopan Prasannath

Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document