Utilization of wood waste ash in green concrete production

2022 ◽  
pp. 419-450
Author(s):  
Yan Zhuge ◽  
Weiwei Duan ◽  
Yue Liu
2013 ◽  
Vol 848 ◽  
pp. 135-138
Author(s):  
Jia Zi Shi ◽  
Xing Dang

Concrete is the most commonly used construction material in the world over the past decades. But the increase in concrete production leads to an increase in greenhouse gases emission and environmental damage. With the current focus on sustainability, it is necessary to evaluate concretes environmental impact and develop new materials for green concrete. Green recycled aggregates and mineral admixtures are important component materials for green concrete. In this paper, the development of green concrete industry is introduced, and the application of materials for green concrete such as green recycled aggregates and mineral admixtures are discussed.


2014 ◽  
Vol 584-586 ◽  
pp. 1568-1572
Author(s):  
Ping Zhang ◽  
Ying Cao

Green high performance concrete is concrete materials which can reduce the load of the earth's environment, coordinate development with the ecosystem and create comfortable living environment. The relationship between the construction materials and the sustainable development and the characteristic of green high performance concrete were introduced, the measures of green concrete production was analyzed and the work essential for the development of green high performance concrete was proposed in this paper. The research shows that the development of green high performance concrete is the inevitable way for the sustainable development of concrete.


Author(s):  
Irem Sanal

Concrete is being recognized for its environmental benefits in support of sustainable development. In response to growing environmental and economic forces, regulatories, engineers and owners are seeking efficient concrete solutions that conserve non-renewable resources. Global demands for regulating concrete waste arise from the growth of these environmental and economic issues. Thus, the concept of “green concrete” as an eco-friendly alternative to conventional concrete has been emerging. This publication seeks to demonstrate how concrete contributes to future generations' sustainable development, and will be of interest to policy makers, contractors and clients, as well as others involved with the design, construction or operation of buildings and infrastructure. The main objective of this study is to identify key sources contributing to CO2 emissions from concrete and compare 1) traditional concretes with green concretes, 2) concretes produced with blended cements, and 3) fly ash used as replacement of cement, in order to diminish the environmental impact of the concrete production.


2020 ◽  
pp. 335-350
Author(s):  
Irem Sanal

Concrete is being recognized for its environmental benefits in support of sustainable development. In response to growing environmental and economic forces, regulatories, engineers and owners are seeking efficient concrete solutions that conserve non-renewable resources. Global demands for regulating concrete waste arise from the growth of these environmental and economic issues. Thus, the concept of “green concrete” as an eco-friendly alternative to conventional concrete has been emerging. This publication seeks to demonstrate how concrete contributes to future generations' sustainable development, and will be of interest to policy makers, contractors and clients, as well as others involved with the design, construction or operation of buildings and infrastructure. The main objective of this study is to identify key sources contributing to CO2 emissions from concrete and compare 1) traditional concretes with green concretes, 2) concretes produced with blended cements, and 3) fly ash used as replacement of cement, in order to diminish the environmental impact of the concrete production.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6803
Author(s):  
Shan Gao ◽  
Sumei Zhang ◽  
Lanhui Guo

Among the techniques for converting stacked coal gangue to reusable material, one of the most effective ways is to use coal gangue as a coarse aggregate in green concrete productions. The physical and chemical properties of rock and spontaneous-combustion coal gangue are generally suitable for being used as a coarse aggregate in green concrete. Coal gangue concrete is not recommended to be used in subsurface structures, as its water absorption law would be changed under a large replacement ratio. The mechanical performance of coal gangue concrete is degraded by raising the replacement ratio. Over-low and -high concrete grades are not suggested to be used as coal gangue aggregate, unless extra admixtures or specific methods are used. The influence of coal gangue on the durability of coal gangue concrete is remarkable, resulting from the porous structure of coal gangue that provides more transmission channels for air and liquid in concrete, but is beneficial for thermal insulation. The usage of coal gangue in structural concrete members is still limited. The mechanical behavior of some structural members using coal gangue concrete has been reported. Among them, concrete filled steel tubes are a preferable configuration for using coal gangue concrete, regarding both the mechanical and durability performance.


2021 ◽  
Vol 1166 ◽  
pp. 113-123
Author(s):  
Julia Nerantzia Tzortzi ◽  
Rola Hasbini

This paper is a short review of green concrete as claimed per latest related available literature. Green concrete refers to concrete mixture with lower carbon footprint, during its total life cycle, as compared to ordinary concrete mixture. This may be due to its composition of one or more green component (s) such as silica fume or fly ash, or to its capacity, as a building material, to reduce one or more pollutant (s) and/or to any other sustainable concrete procedure such as reduced raw materials depletion. A leading Italian concrete production group claims the provision of a new air scrubbing green concrete combining all of the above techniques. The claimed air scrubbing is based on a photocatalytic principle whereby natural or artificial light activates an oxidation process converting noxious pollutants into harmless compounds. Green concrete promotes sustainability in a creative way; thus, improving global human health.


2013 ◽  
Vol 634-638 ◽  
pp. 2672-2675
Author(s):  
Zhen Rong Lin ◽  
Tao Zhang ◽  
Yun Yun Xu

As the world's largest building materials production, the mechanical properties of concrete prominent and construction is simple, inexpensive features. Concrete production and construction sectors also exists a very serious problem of environmental pollution, people have to consider how to enhance the environmental protection of concrete, namely, the production and use of "green concrete". Since the past one-sided pursuit of high strength concrete, while ignoring the the durability issues brought a series of questions, allowing people to put forward the concept of a high-performance concrete. The paper by exploring the current development of high-performance green concrete, summary of the proposed method to achieve green high performance concrete.


2020 ◽  
Vol 838 ◽  
pp. 88-93
Author(s):  
Kristýna Hrabová

Green concrete is defined as a concrete which uses waste material as at least one of its components, or its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. Currently, cement and concrete production is at all-time high resulting in significant carbon dioxide emissions. Eight percent of the world's total CO2 emissions come from manufacturing cement. Nanomaterial concrete is new generation concrete formed of materials of the grain size of nanoscale. In the construction industry, nanomaterials has potentials, especially the functional characteristics such as increased tensile strength. The paper shows the dose dependence carbon nanotubes for the physico-mechanical properties of cement mixes.


Sign in / Sign up

Export Citation Format

Share Document