scholarly journals Application of Coal Gangue as a Coarse Aggregate in Green Concrete Production: A Review

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6803
Author(s):  
Shan Gao ◽  
Sumei Zhang ◽  
Lanhui Guo

Among the techniques for converting stacked coal gangue to reusable material, one of the most effective ways is to use coal gangue as a coarse aggregate in green concrete productions. The physical and chemical properties of rock and spontaneous-combustion coal gangue are generally suitable for being used as a coarse aggregate in green concrete. Coal gangue concrete is not recommended to be used in subsurface structures, as its water absorption law would be changed under a large replacement ratio. The mechanical performance of coal gangue concrete is degraded by raising the replacement ratio. Over-low and -high concrete grades are not suggested to be used as coal gangue aggregate, unless extra admixtures or specific methods are used. The influence of coal gangue on the durability of coal gangue concrete is remarkable, resulting from the porous structure of coal gangue that provides more transmission channels for air and liquid in concrete, but is beneficial for thermal insulation. The usage of coal gangue in structural concrete members is still limited. The mechanical behavior of some structural members using coal gangue concrete has been reported. Among them, concrete filled steel tubes are a preferable configuration for using coal gangue concrete, regarding both the mechanical and durability performance.

2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


Author(s):  
B. Arun Kumar ◽  
Shamshad Begum

Self-compacting concrete (SCC) is also considered as a concrete which can be placed and compacted under its own weight with little or no vibration without segregation or bleeding. The use of SCC with its improving productions techniques is increasing everyday in concrete production. It is used to facilitate and ensure proper filling and good structural performance of heavily reinforced structural members. Recently, nano particles have been gaining increasing attention and have been applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. Degradation of concrete members exposed to aggressive sulphuric acid environments is a key durability issue that affects the life cycle performance and maintenance costs of vital civil infrastructure. Sulphuric acid in groundwater, chemical waste or generated from the oxidation of sulphur bearing compounds in backfill can attack substructure concrete members. Moreover, concrete structures in industrial zones are susceptible to deterioration due to acid rain of which sulphuric acid is a chief component. In this work 40Mpa self-compacting concrete is developed using modified Nan-Su method of mix design. Slump flow, J-Ring, V-funnel tests are conducted to justify the fresh properties of SCC and are checked against EFNARC (2005) specifications. Specimens of dimensions 150x150x150mm were cast without nano silica and with two nano silica are added in different percentages(1%, 1.5% and 2% by weight of cement) to SCC. To justify the compressive strength for 7 and 28days, specimens are tested under axial compression. Durability properties were also studied by immersing the specimensin5% HCl and5% H2SO4. The particle packing in concrete can be improved by using Nano-silica which leads to densifying of the micro and nanostructure resulting in improved mechanical properties. Nano-silica addition to cement based materials can also control the degradation of the fundamental C-S-H (calcium-silicate-hydrate) reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability.


Author(s):  
Engr. Furqan Wali

This paper presents an assessment of gamma radiation performance, specifically in terms of attenuation energy, of concrete containing coarse aggregate having different physical and chemical properties. Basalt being heavier and somehow having high specific gravity is likely to have a good performance against gamma radiation. Through this paper, the author has made a comparison between the concrete having different coarse aggregates, normal aggregate phase and basaltic aggregate phase by evaluating the attenuation energies of both the phases at the Institute of Radiotherapy and Nuclear Medicine (IRNUM) Peshawar. Also, the water to cement ratio (W/C) for both the phases was distinguished i.e. 3.5 and 5.7 to make the results more promising and enabling to make the comparison effective. The test was likely to be conducted on Molds having 10 cm by 10 cm cross-section of each W/C ratio with varying thickness of about 2cm and will lead up to 10cm. The detecting device used was a phoenix teletherapy machine operating with a former type ionization chamber having an energy of 1.25 MeV. The source of radiation was Cobalt 60. The results indicated that basalt despite having strong physical properties is insufficient to be used for Gamma shielding. The two materials vary very little, so it is negligible to be used for a specific reason.


Author(s):  
K. Satish Kumar Reddy ◽  
D. Mohammed Rafi ◽  
A.B.S. Dadapeer

Self-compacting concrete (SCC) is also considered as a concrete which can be placed and compacted under its own weight with little or no vibration without segregation or bleeding. The use of SCC with its improving productions techniques is increasing everyday in concrete production. It is used to facilitate and ensure proper filling and good structural performance of heavily reinforced structural members. Recently, nano particles have been gaining increasing attention and have been applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. Degradation of concrete members exposed to aggressive sulphuric acid environments is a key durability issue that affects the life cycle performance and maintenance costs of vital civil infrastructure. Sulphuric acid in groundwater, chemical waste or generated from the oxidation of sulphur bearing compounds in backfill can attack substructure concrete members. Moreover, concrete structures in industrial zones are susceptible to deterioration due to acid rain of which sulphuric acid is a chief component. In this work 40Mpa self-compacting concrete is developed using modified Nan-Su method of mix design. Slump flow, J-Ring, V-funnel tests are conducted to justify the fresh properties of SCC and are checked against EFNARC (2005) specifications. Specimens of dimensions 150x150x150mm were cast without nano silica and with two nano silica are added in different percentages(1%, 1.5% and 2% by weight of cement) to SCC. To justify the compressive strength for 7 and 28days, specimens are tested under axial compression. Durability properties were also studied by immersing the specimensin5% HCl and5% H2SO4. The particle packing in concrete can be improved by using Nano-silica which leads to densifying of the micro and nanostructure resulting in improved mechanical properties. Nano-silica addition to cement based materials can also control the degradation of the fundamental C-S-H (calcium-silicate-hydrate) reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability.


2021 ◽  
Vol 21 (1) ◽  
pp. 23-36
Author(s):  
João Vitor Felippe Silva ◽  
Maria Fernanda Felippe Silva ◽  
Bruno Santos Ferreira ◽  
Juliano Fiorelli ◽  
André Luis Christoforo ◽  
...  

Abstract Oriented Structural Straw Board (OSSB) panels are composites made from straw originally from agricultural residues and non-formaldehyde based adhesive, whose main application is for construction as a closing and ceiling material. The objective of this study was to evaluate the effect of the polyurethane adhesive content on physical and mechanical properties of OSSB produced with locally available SbS (soybean straw). Four castor oil based polyurethane ratios (6%, 9%, 12% and 15%, by mass of the SbS) were tested. OSSB was evaluated according to European standards for wood-based composites; also, a physical and chemical characterization of the SbS was performed. SbS has an irregular shape, which reduced the OSSB mechanical performance due to the low densification of the composite and the development of transversal cracks on the SbS after the OSSB manufacturing process. The static bending and thickness swelling performance of SbS OSSB was not improved by the increase of polyurethane adhesive content. SbS low ash content and neutral pH extractives indicates that probably its chemical properties should not affect the setting of the adhesive.


2020 ◽  
Vol 13 (2) ◽  
pp. 433-454
Author(s):  
L. PASSOS ◽  
A. L. MORENO Jr. ◽  
A. A. A. SOUZA

Abstract With the increasing use of recycled materials from civil construction, mainly as substitute for some aggregates in concrete mixtures, it is necessary to obtain technical information on the performance of these new mixtures. National and international research on the use of ceramic waste in concrete production highlight good results of this new material’s mechanical performance in environmental situations. However, little is known about its behavior at high temperatures. In this context, we sought to verify the performance of concrete mixtures produced with aggregates from ceramic block waste at high temperatures, with evaluation of their residual mechanical strength, axial compressive strength and elastic modulus, and also their tendency to spalling in fire situations. The RILEM-129 MHT method [1] was used for the assessment of residual mechanical strength, and the tendency to spalling was evaluated according to the procedure suggested by Souza and Moreno [2]. In both these evaluations, there is no national standard, and, in the case of spalling, not even an international standard. Three concrete mixtures were used, one prepared with natural coarse basalt aggregate (reference) and the other two by replacing part of this natural aggregate with aggregate from ceramic block waste (40% and 100% of substitution in volume). In the end, it is concluded that the substitution of natural coarse aggregate for lightweight aggregate from ceramic block waste can be an excellent alternative to increase the resistance of concrete to fire. Thus, the results of mechanical strength and spalling in a fire situation, unprecedented in our country, can greatly support the decision-making about the use of this alternative material in the national construction industry.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Sign in / Sign up

Export Citation Format

Share Document