Ocular pharmacokinetic, drug bioavailability, and intraocular drug delivery systems

2010 ◽  
pp. 60-66
Author(s):  
Rocío Herrero-Vanrell ◽  
Jose A. Cardillo
2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1232
Author(s):  
Mohammadmahdi Mobaraki ◽  
Madjid Soltani ◽  
Samaneh Zare Harofte ◽  
Elham L. Zoudani ◽  
Roshanak Daliri ◽  
...  

During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1742 ◽  
Author(s):  
Olga Cegielska ◽  
Paweł Sajkiewicz

Each year, new glaucoma drug delivery systems are developed. Due to the chronic nature of the disease, it requires the inconvenient daily administration of medications. As a result of their elution from the eye surface and penetration to the bloodstream through undesired permeation routes, the bioavailability of active compounds is low, and systemic side effects occur. Despite numerous publications on glaucoma drug carriers of controlled drug release kinetics, only part of them consider drug permeation routes and, thus, carriers’ location, as an important factor affecting drug delivery. In this paper, we try to demonstrate the importance of the delivery proximal to glaucoma drug targets. The targeted delivery can significantly improve drug bioavailability, reduce side effects, and increase patients’ compliance compared to both commercial and scientifically developed formulations that can spread over the eye surface or stay in contact with conjunctival sac. We present a selection of glaucoma drug carriers intended to be placed on cornea or injected into the aqueous humor and that have been made by advanced materials using hi-tech forming methods, allowing for effective and convenient sustained antiglaucoma drug delivery.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Dharani Manickavasagam ◽  
Moses O. Oyewumi

Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs) to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure). However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a) patient tolerability and acceptance, (b) drug stability and drug release profiles, (c) therapeutic efficacy, and (d) toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.


2021 ◽  
Vol 14 (11) ◽  
pp. 1201
Author(s):  
Bharti Gupta ◽  
Varsha Mishra ◽  
Sankalp Gharat ◽  
Munira Momin ◽  
Abdelwahab Omri

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.


2020 ◽  
Vol 26 (6) ◽  
pp. 701-709
Author(s):  
Phuong H.L. Tran ◽  
Thao T.D. Tran

Improving drug bioavailability in the pharmaceutical field is a challenge that has attracted substantial interest worldwide. The controlled release of a drug can be achieved with a variety of strategies and novel materials in the field. In addition to the vast development of innovative materials for improving therapeutic effects and reducing side effects, the exploration of remarkable existing materials could encourage the discovery of diverse approaches for adapted drug delivery systems. Recently, superdisintegrants have been proposed for drug delivery systems as alternative approaches to maximize the efficiency of therapy. Although superdisintegrants are well known and used in solid dosage forms, studies on strategies for the development of drug delivery systems using superdisintegrants are lacking. Therefore, this study reviews the use of superdisintegrants in controlled drug release dosage formulations. This overview of superdisintegrants covers developed strategies, types (including synthetic and natural materials), dosage forms and techniques and will help to improve drug delivery systems.


Author(s):  
Mehta Abhinav ◽  
Jain Neha ◽  
Grobler Anne ◽  
Vandana Bharti

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Most of the new drugs used today have poor bioavailability and are required to be administered at higher doses because only a small fraction of the administered dose is absorbed in the systemic circulation and able to reach the target site. This results in the wastage of major amount of drug and lead to adverse effects. Pharmaceutical technology mainly focuses on enhancing the solubility and permeability of drugs with lower bioavailability. Nanotechnology is the concept used in NDDS that enables a weight reduction of drug particles accompanied by an increase in stability and improved functionality. Various approaches such as nanosuspensions, liposomes, niosomes, nanoemulsions, cubosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cyclodextrins, phytosome etc., are used for the enhancement of bioavailability. The present review focuses on the different approaches used for bioavailability enhancement along with their advantages and disadvantages.


2019 ◽  
Vol 9 (1) ◽  
pp. 337-347 ◽  
Author(s):  
Asmat Majeed ◽  
Nisar Ahmad Khan

Eye is the most sensitive organ of the body. Designing of ocular drug delivery system is the  most challenging field for pharmaceutical scientists as less than 5% of administered drug enters the eye due to the complicated anatomical structure of the eye, small absorptive surface and low transparency of the cornea, lipophilicity of corneal epithelium, pre corneal loss (due to nasolacrimal drainage), bonding of the drug with proteins contained in tear fluid, blinking, low capacity of conjunctival sac, that restricts the entry of drug molecule at the site of action and ultimately leads to poor ocular therapy. To improve ophthalmic drug bioavailability, there are considerable efforts directed towards newer drug delivery systems for ophthalmic administration. These novel drug delivery systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. A lot of research going on in this area proves the fact that in situ gelling systems can be beneficial in the ocular drug delivery. In situ gel forming systems are drug delivery systems that are in solution form before administration in the body but once administered, undergo  in situ gelation, to form a gel triggered by external stimulus such as temperature, pH etc.  This review is to Specify a brief summary about in situ gels, various approaches for in situ gelling systems, different types of polymers used in in situ gels, their mechanisms of gel formation and evaluation of polymeric in situ gel. Keywords: in situ gel, polymers, Temperature induced in situ gel system, pH induced in situ gel system, Ion activated systems.


Author(s):  
Unnati Garg ◽  
Karuna Jain

Transdermal delivery over the past decade has become the field of interest for drug delivery due to its various advantages such as no first-pass metabolism, increased drug bioavailability, and easy administration. Different vesicle systems like ethosomes, liposomes, niosomes, and transferosomes along with particle systems like lipid nanoparticles, polymeric nanoparticles, carbon nanotubes, and fullerenes have been developed. These vesicles and particle systems have been developed using various easy and effective methods like cold injection method, rotary film evaporation, thin film hydration, high shear homogenization, solvent extraction method, and many more. These drug delivery systems are a very effective and feasible option for transdermal drug delivery and further developments can be made to increase their use. This article explains in detail the preparation methods and applications for these drug delivery systems.


2011 ◽  
Vol 14 (1) ◽  
pp. 100 ◽  
Author(s):  
Ranjita Shegokar ◽  
Loaye Al Shaal ◽  
Khalil Mitri

Nanotechnology has offered enormous improvement in field of therapeutics by means of designing of drug delivery systems and opened the possibility of controlling infections at the molecular level. Nanocarriers can cross biological barriers and are able to target cellular reservoirs of Mycobacterium tuberculosis (M. tuberculosis). Nanoparticle-based systems have significant potential for treatment and prevention of tuberculosis (TB). A variety of nanocarriers have been widely evaluated as potential drug delivery systems for various administration routes. Targeting the drugs to certain physiological sites such as the lymph nodes has emerged as a promising strategy in treating TB with improved drug bioavailability and reduction of the dosing frequency. Nanotechnology based rational targeting may improve therapeutic success by limiting adverse drug effects and requiring less frequent administration regimes, ultimately resulting in more patients compliance and thus attain higher adherence levels. The development of nanoparticle based aerosol vaccine is undergoing which could serve as new platform for immunization. Present article compiles the general physiological aspects of the infection along with the relevance nanocarriers used in prevention of tuberculosis


Sign in / Sign up

Export Citation Format

Share Document