scholarly journals Present status of nanoparticle research for treatment of Tuberculosis

2011 ◽  
Vol 14 (1) ◽  
pp. 100 ◽  
Author(s):  
Ranjita Shegokar ◽  
Loaye Al Shaal ◽  
Khalil Mitri

Nanotechnology has offered enormous improvement in field of therapeutics by means of designing of drug delivery systems and opened the possibility of controlling infections at the molecular level. Nanocarriers can cross biological barriers and are able to target cellular reservoirs of Mycobacterium tuberculosis (M. tuberculosis). Nanoparticle-based systems have significant potential for treatment and prevention of tuberculosis (TB). A variety of nanocarriers have been widely evaluated as potential drug delivery systems for various administration routes. Targeting the drugs to certain physiological sites such as the lymph nodes has emerged as a promising strategy in treating TB with improved drug bioavailability and reduction of the dosing frequency. Nanotechnology based rational targeting may improve therapeutic success by limiting adverse drug effects and requiring less frequent administration regimes, ultimately resulting in more patients compliance and thus attain higher adherence levels. The development of nanoparticle based aerosol vaccine is undergoing which could serve as new platform for immunization. Present article compiles the general physiological aspects of the infection along with the relevance nanocarriers used in prevention of tuberculosis

2018 ◽  
Vol 5 (10) ◽  
Author(s):  
Caroline B Derrick ◽  
Jan Ostermann ◽  
Sharon B Weissman ◽  
Amy Hobbie ◽  
Noor Alshareef ◽  
...  

Abstract Study participants were asked about their interest in switching to novel drug delivery systems that reduce the dosing frequency of antiretroviral regimens. Across a diverse, treatment-experienced cohort, we describe greatest interest in switching to an oral regimen taken once weekly, followed by injections taken every other month and twice-annual implants.


2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1232
Author(s):  
Mohammadmahdi Mobaraki ◽  
Madjid Soltani ◽  
Samaneh Zare Harofte ◽  
Elham L. Zoudani ◽  
Roshanak Daliri ◽  
...  

During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1742 ◽  
Author(s):  
Olga Cegielska ◽  
Paweł Sajkiewicz

Each year, new glaucoma drug delivery systems are developed. Due to the chronic nature of the disease, it requires the inconvenient daily administration of medications. As a result of their elution from the eye surface and penetration to the bloodstream through undesired permeation routes, the bioavailability of active compounds is low, and systemic side effects occur. Despite numerous publications on glaucoma drug carriers of controlled drug release kinetics, only part of them consider drug permeation routes and, thus, carriers’ location, as an important factor affecting drug delivery. In this paper, we try to demonstrate the importance of the delivery proximal to glaucoma drug targets. The targeted delivery can significantly improve drug bioavailability, reduce side effects, and increase patients’ compliance compared to both commercial and scientifically developed formulations that can spread over the eye surface or stay in contact with conjunctival sac. We present a selection of glaucoma drug carriers intended to be placed on cornea or injected into the aqueous humor and that have been made by advanced materials using hi-tech forming methods, allowing for effective and convenient sustained antiglaucoma drug delivery.


2021 ◽  
Vol 14 (11) ◽  
pp. 1201
Author(s):  
Bharti Gupta ◽  
Varsha Mishra ◽  
Sankalp Gharat ◽  
Munira Momin ◽  
Abdelwahab Omri

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.


2020 ◽  
Vol 26 (6) ◽  
pp. 701-709
Author(s):  
Phuong H.L. Tran ◽  
Thao T.D. Tran

Improving drug bioavailability in the pharmaceutical field is a challenge that has attracted substantial interest worldwide. The controlled release of a drug can be achieved with a variety of strategies and novel materials in the field. In addition to the vast development of innovative materials for improving therapeutic effects and reducing side effects, the exploration of remarkable existing materials could encourage the discovery of diverse approaches for adapted drug delivery systems. Recently, superdisintegrants have been proposed for drug delivery systems as alternative approaches to maximize the efficiency of therapy. Although superdisintegrants are well known and used in solid dosage forms, studies on strategies for the development of drug delivery systems using superdisintegrants are lacking. Therefore, this study reviews the use of superdisintegrants in controlled drug release dosage formulations. This overview of superdisintegrants covers developed strategies, types (including synthetic and natural materials), dosage forms and techniques and will help to improve drug delivery systems.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2241
Author(s):  
Raúl Cazorla-Luna ◽  
Araceli Martín-Illana ◽  
Fernando Notario-Pérez ◽  
Roberto Ruiz-Caro ◽  
María-Dolores Veiga

Biopolymers have several advantages for the development of drug delivery systems, since they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional versatility. Although only one natural polycation—chitosan has been widely explored until now, it has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both local and systemic treatments. The advantages observed for these formulations include the increased bioavailability or residence time of the formulation in the administration zone, and the avoidance of invasive administration routes, leading to greater therapeutic compliance.


Author(s):  
Mehta Abhinav ◽  
Jain Neha ◽  
Grobler Anne ◽  
Vandana Bharti

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Most of the new drugs used today have poor bioavailability and are required to be administered at higher doses because only a small fraction of the administered dose is absorbed in the systemic circulation and able to reach the target site. This results in the wastage of major amount of drug and lead to adverse effects. Pharmaceutical technology mainly focuses on enhancing the solubility and permeability of drugs with lower bioavailability. Nanotechnology is the concept used in NDDS that enables a weight reduction of drug particles accompanied by an increase in stability and improved functionality. Various approaches such as nanosuspensions, liposomes, niosomes, nanoemulsions, cubosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cyclodextrins, phytosome etc., are used for the enhancement of bioavailability. The present review focuses on the different approaches used for bioavailability enhancement along with their advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document