Single-process fused filament fabrication 3d-printed high-sensitivity dynamic piezoelectric sensor

2021 ◽  
pp. 102482
Author(s):  
Tilen Košir ◽  
Janko Slavič
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 861
Author(s):  
Ali Abdallah ◽  
Manfred Pauritsch ◽  
Christian Gasser ◽  
Florian Stangl ◽  
Matthias Primas ◽  
...  

A three dimensional, additively manufactured interdigital capacitive sensor for fluid level measurement applications is introduced. The device was fabricated using the fused filament fabrication (FFF) additive manufacturing (AM) process and an off the shelf conductive filament with a volume resistivity ρ = 0.6 Ω cm. The 3D fabrication process allows great flexibility in terms of sensor ̇ design and an increase of the surface area between the electrodes, compensating the relatively large plate separation and yielding a high sensitivity to increasing fluid levels. The measurements presented in this abstract show the average increase of capacitance in response to an incrementally increasing volume of de-ionized water (DI-water) filled between the separate digits.


2020 ◽  
Vol 36 ◽  
pp. 101544
Author(s):  
Devin J. Roach ◽  
Christopher Roberts ◽  
Janet Wong ◽  
Xiao Kuang ◽  
Joshua Kovitz ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8967
Author(s):  
Victor Gil Muñoz ◽  
Luisa M. Muneta ◽  
Ruth Carrasco-Gallego ◽  
Juan de Juanes Marquez ◽  
David Hidalgo-Carvajal

The circular economy model offers great opportunities to companies, as it not only allows them to capture additional value from their products and materials, but also reduce the fluctuations of price-related risks and material supply. These risks are present in all kind of businesses not based on the circular economy. The circular economy also enables economic growth without the need for more resources. This is because each unit has a higher value as a result of recycling and reuse of products and materials after use. Following this circular economics framework, the Polytechnic University of Madrid (Universidad Politécnica de Madrid, UPM) has adopted strategies aimed at improving the circularity of products. In particular, this article provides the result of obtaining recycled PLA filament from waste originating from university 3D FFF (fused filament fabrication) printers and waste generated by “Coronamakers” in the production of visors and parts for PPEs (Personal Protective Equipment) during the lockdown period of COVID-19 in Spain. This filament is used in the production of 3D printed parts that university students use in their classes, so the circular loop is closed. The obtained score of Material Circularity Indicator (MCI) of this material has been calculated, indicating its high level of circularity.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Alessia Romani ◽  
Andrea Mantelli ◽  
Paolo Tralli ◽  
Stefano Turri ◽  
Marinella Levi ◽  
...  

Fused filament fabrication allows the direct manufacturing of customized and complex products although the layer-by-layer appearance of this process strongly affects the surface quality of the final parts. In recent years, an increasing number of post-processing treatments has been developed for the most used materials. Contrarily to other additive manufacturing technologies, metallization is not a common surface treatment for this process despite the increasing range of high-performing 3D printable materials. The objective of this work is to explore the use of physical vapor deposition sputtering for the chromium metallization of thermoplastic polymers and composites obtained by fused filament fabrication. The thermal and mechanical properties of five materials were firstly evaluated by means of differential scanning calorimetry and tensile tests. Meanwhile, a specific finishing torture test sample was designed and 3D printed to perform the metallization process and evaluate the finishing on different geometrical features. Furthermore, the roughness of the samples was measured before and after the metallization, and a cost analysis was performed to assess the cost-efficiency. To sum up, the metallization of five samples made with different materials was successfully achieved. Although some 3D printing defects worsened after the post-processing treatment, good homogeneity on the finest details was reached. These promising results may encourage further experimentations as well as the development of new applications, i.e., for the automotive and furniture fields.


2014 ◽  
Vol 1685 ◽  
Author(s):  
Ho Yeon Son ◽  
Yoon Sung Nam ◽  
Woo Soo Kim

ABSTRACTHere we introduce a facile method to fabricate a flexible piezoelectric sensor using one-dimensional (1-D) piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers directly produced onto flexible printed electrodes by electro-spinning without an additional poling process. The flexible silver electrodes are fabricated on polyethylene terephthalate (PET) using silver nanowires by easy and cost-effective spraying deposition. The electrospun PVDF nanofibers have uniaxially aligned arrays on the electrodes by using a rotating collector. The fabricated PVDF piezoelectric sensors demonstrate the piezoelectric responses with repeated mechanical stimuli with good flexibility and high sensitivity. We expect that the facile fabrication of PVDF piezoelectric sensors on flexible printed electrodes can be usefully exploited to integrate the piezoelectric sensors into flexible and stretchable functional electronic devices.


2019 ◽  
Vol 102 ◽  
pp. 90-95 ◽  
Author(s):  
Dongfeng He ◽  
Zhi Wang ◽  
Masahiro Kusano ◽  
Satoshi Kishimoto ◽  
Makoto Watanabe

Sign in / Sign up

Export Citation Format

Share Document