Potential carbon sequestration in a cultivated soil under different climate change scenarios: A modelling approach for evaluating promising management practices in north-east Italy

2008 ◽  
Vol 128 (1-2) ◽  
pp. 97-103 ◽  
Author(s):  
E. Lugato ◽  
A. Berti
2016 ◽  
Vol 154 (7) ◽  
pp. 1153-1170 ◽  
Author(s):  
E. EBRAHIMI ◽  
A. M. MANSCHADI ◽  
R. W. NEUGSCHWANDTNER ◽  
J EITZINGER ◽  
S. THALER ◽  
...  

SUMMARYClimate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Jose A. Fernandes ◽  
Thomas L. Frölicher ◽  
Louise A. Rutterford ◽  
Maite Erauskin-Extramiana ◽  
William W. L. Cheung

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1201 ◽  
Author(s):  
Pantelis Sidiropoulos ◽  
Georgios Tziatzios ◽  
Lampros Vasiliades ◽  
Nikitas Mylopoulos ◽  
Athanasios Loukas

Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for rivers, lakes, and wetlands and constitutes the main source of potable water. The need of aquifers simulation, taking into account water resources components at watershed level, is imperative for the choice of appropriate restoration management practices. An integrated water resources modeling approach, using hydrological modeling tools, is presented for assessing the nitrate fate and transport on an over-exploited aquifer with intensive and extensive agricultural activity under various operational strategies and future climate change scenarios. The results indicate that climate change affects nitrates concentration in groundwater, which is likely to be increased due to the depletion of the groundwater table and the decrease of groundwater enrichment in the future water balance. Application of operational agricultural management practices with the construction and use of water storage infrastructure tend to compensate the groundwater resources degradation due to climate change impacts.


2006 ◽  
Vol 36 (9) ◽  
pp. 2223-2234 ◽  
Author(s):  
Mark Boyland

Changes in forest-management practices have the potential to increase forest land carbon storage, which would help to reduce CO2 concentrations in the atmosphere linked to climate change and contribute to Kyoto Protocol targets for signatory countries. However, successfully increasing carbon storage while maintaining economic profitability is challenging because of the long planning horizons required for many forest activities and slow carbon sequestration rates in northern forests. The literature on the economics of forest management for carbon storage is unfortunately sparse and, in many instances, confused and misleading. Three carbon valuation equations are widely used that give contradictory results, with two of them (flow summation and average storage) ignoring the time-value carbon benefits and other essential data. Only the discounted carbon equation gives reasonably interpretable economic results. As well, many studies have omitted essential economic gradients that result in structurally questionable results. I review the literature, highlighting deficiencies in equations and how analyses are structured with the intent to produce a reasonable method of interpreting previous work and advice for future studies.


2020 ◽  
Author(s):  
Carlos A. Sierra ◽  
Susan E. Crow ◽  
Martin Heimann ◽  
Holger Metzler ◽  
Ernst-Detleft Schulze

Abstract. Ecosystems play a fundamental role in climate change mitigation by taking up carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions can be quantified by global warming potentials, it is not necessarily clear what are appropriate formal metrics to assess climate benefits of carbon removals by sinks. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect of taking up carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back to the atmosphere. To quantify CBS, we also propose a formal definition of carbon sequestration (CS) as the integral of an amount of carbon taken up from the atmosphere stored over the time horizon it remains in an ecosystem. Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of carbon retention) in carbon sinks, which can vary largely for different ecosystems or management types. In three separate examples, we show how to compute and apply these metrics to compare different carbon management practices in forestry and soils. We believe these metrics can be useful in resolving current controversies about the management of ecosystems for climate change mitigation.


Author(s):  
Carina Almeida ◽  
Paulo Branco ◽  
Pedro Segurado ◽  
Tiago B. Ramos ◽  
Teresa Ferreira ◽  
...  

Abstract This study describes an integrated modelling approach to better understand the trophic status of the Montargil reservoir (southern Portugal) under climate change scenarios. The SWAT and CE-QUAL-W2 models were applied to the basin and reservoir, respectively, for simulating water and nutrient dynamics while considering one climatic scenario and two decadal timelines (2025–2034 and 2055–2064). Model simulations showed that the dissolved oxygen concentration in the reservoir's hypolimnion is expected to decrease by 60% in both decadal timelines, while the chlorophyll-a concentration in the reservoir's epiliminion is expected to increase by 25%. The total phosphorus concentration (TP) is predicted to increase in the water column surface by 63% and in the hypolimion by 90% during the 2030 timeline. These results are even more severe during the 2060 timeline. Under this climate change scenario, the reservoir showed an eutrophic state during 70–80% of both timelines. Even considering measures that involve decreases in 30 to 35% of water use, the eutrophic state is not expected to improve.


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


2011 ◽  
Vol 15 (7) ◽  
pp. 2245-2258 ◽  
Author(s):  
L. M. Mango ◽  
A. M. Melesse ◽  
M. E. McClain ◽  
D. Gann ◽  
S. G. Setegn

Abstract. Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.


Sign in / Sign up

Export Citation Format

Share Document