scholarly journals Zinc alleviates the heat stress of primary cultured hepatocytes of broiler embryos via enhancing the antioxidant ability and attenuating the heat shock responses

2021 ◽  
Author(s):  
Tingting Li ◽  
Wengang He ◽  
Xiudong Liao ◽  
Xi Lin ◽  
Liyang Zhang ◽  
...  
1998 ◽  
Vol 9 (6) ◽  
pp. 1339-1349 ◽  
Author(s):  
Kazuhiro Shiozaki ◽  
Mitsue Shiozaki ◽  
Paul Russell

Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2)wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI inΔpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DDcells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.


1999 ◽  
Vol 202 (21) ◽  
pp. 2925-2936 ◽  
Author(s):  
L. Tomanek ◽  
G.N. Somero

Heat stress sufficient to cause cellular damage triggers the heat-shock response, the enhanced expression of a group of molecular chaperones called heat-shock proteins (hsps). We compared the heat-shock responses of four species of marine snails of the genus Tegula that occupy thermal niches differing in absolute temperature and range of temperature. We examined the effects of short-term heat stress and thermal acclimation on the synthesis of hsps of size classes 90, 77, 70 and 38 kDa by measuring incorporation of (35)S-labeled methionine and cysteine into newly synthesized proteins in gill tissue. Temperatures at which enhanced synthesis of hsps first occurred (T(on)), temperatures of maximal induction of hsp synthesis (T(peak)) and temperatures at which hsp synthesis was heat-inactivated (T(off)) were lowest in two low-intertidal to subtidal species from the temperate zone, T. brunnea and T. montereyi, intermediate in a mid- to low-intertidal species of the temperate zone, T. funebralis, and highest in a subtropical intertidal species from the Gulf of California, T. rugosa. Synthesis of hsps and other classes of protein by T. brunnea and T. montereyi was heat-inactivated at temperatures commonly encountered by T. funebralis during low tides on warm days. In turn, protein synthesis by T. funebralis was blocked at the upper temperatures of the habitat of T. rugosa. Acclimation of snails to 13 degrees C, 18 degrees C and 23 degrees C shifted T(on) and T(peak) for certain hsps, but did not affect T(off). The heat-shock responses of field-acclimatized snails were generally reduced in comparison with those of laboratory-acclimated snails. Overall, despite the occurrence of acclimatory plasticity in their heat-shock responses, genetically fixed differences in T(on), T(peak) and T(off) appear to exist that reflect the separate evolutionary histories of these species and may play important roles in setting their thermal tolerance limits and, thereby, their biogeographic distribution patterns.


Kanzo ◽  
1991 ◽  
Vol 32 (5) ◽  
pp. 505-511 ◽  
Author(s):  
Yasuyuki NAGAO ◽  
Takeshi OKANOUE ◽  
Yoshito ITO ◽  
Michio MORIMOTO ◽  
Keizo KAGAWA ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 948
Author(s):  
Zhaoxia Li ◽  
Stephen H. Howell

High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.


Author(s):  
Henrique Barbosa Hooper ◽  
Priscila dos Santos Silva ◽  
Sandra Aparecida de Oliveira ◽  
Giovana Krempel Fonseca Merighe ◽  
Cristiane Gonçalves Titto ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7557-7568 ◽  
Author(s):  
J Zuo ◽  
R Baler ◽  
G Dahl ◽  
R Voellmy

Heat stress regulation of human heat shock genes is mediated by human heat shock transcription factor hHSF1, which contains three 4-3 hydrophobic repeats (LZ1 to LZ3). In unstressed human cells (37 degrees C), hHSF1 appears to be in an inactive, monomeric state that may be maintained through intramolecular interactions stabilized by transient interaction with hsp70. Heat stress (39 to 42 degrees C) disrupts these interactions, and hHSF1 homotrimerizes and acquires heat shock element DNA-binding ability. hHSF1 expressed in Xenopus oocytes also assumes a monomeric, non-DNA-binding state and is converted to a trimeric, DNA-binding form upon exposure of the oocytes to heat shock (35 to 37 degrees C in this organism). Because endogenous HSF DNA-binding activity is low and anti-hHSF1 antibody does not recognize Xenopus HSF, we employed this system for mapping regions in hHSF1 that are required for the maintenance of the monomeric state. The results of mutagenesis analyses strongly suggest that the inactive hHSF1 monomer is stabilized by hydrophobic interactions involving all three leucine zippers which may form a triple-stranded coiled coil. Trimerization may enable the DNA-binding function of hHSF1 by facilitating cooperative binding of monomeric DNA-binding domains to the heat shock element motif. This view is supported by observations that several different LexA DNA-binding domain-hHSF1 chimeras bind to a LexA-binding site in a heat-regulated fashion, that single amino acid replacements disrupting the integrity of hydrophobic repeats render these chimeras constitutively trimeric and DNA binding, and that LexA itself binds stably to DNA only as a dimer but not as a monomer in our assays.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


Sign in / Sign up

Export Citation Format

Share Document