Nicotine and energy balance: A review examining the effect of nicotine on hormonal appetite regulation and energy expenditure

Appetite ◽  
2021 ◽  
Vol 164 ◽  
pp. 105260
Author(s):  
Alexander Schwartz ◽  
Nick Bellissimo
Appetite ◽  
2007 ◽  
Vol 49 (1) ◽  
pp. 339 ◽  
Author(s):  
K.R. Westerterp

2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


1989 ◽  
Vol 67 (4) ◽  
pp. 394-401 ◽  
Author(s):  
Jean Himms-Hagen

Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in ail organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF)). At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT)) balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.Key words: thermogenesis, brown adipose tissue, energy balance, obesity, cold, thermoregulation, diet.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1154-P
Author(s):  
DAVID Q. JOHNSON ◽  
RASHMITA BASU ◽  
JONATHAN FLAK

1987 ◽  
Vol 110 (5) ◽  
pp. 753-759 ◽  
Author(s):  
Karl F. Schulze ◽  
Mark Stefanski ◽  
Julia Masterson ◽  
Regina Spinnazola ◽  
Rajasekhar Ramakrishnan ◽  
...  

2015 ◽  
Vol 30 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Stefano Guidotti ◽  
Berthe M. A. A. A. Verstappen-Dumoulin ◽  
Henk G. Jansen ◽  
Anita T. Aerts-Bijma ◽  
André A. van Vliet ◽  
...  

2018 ◽  
Vol 30 (4) ◽  
pp. 506-515 ◽  
Author(s):  
Keren Susan Cherian ◽  
Ashok Sainoji ◽  
Balakrishna Nagalla ◽  
Venkata Ramana Yagnambhatt

Purpose: To evaluate energy expenditure, energy intake, and nutrient adequacy of Indian junior soccer players. Method: Forty junior national-level soccer players (Under-12 and Under-16 age groups) were assessed for 3-day weighed food records and 3-day energy expenditure. Energy and nutrient intake was analyzed from food records, and energy expenditure was measured using a portable metabolic analyzer and activity records. Nutrient adequacy was determined by comparing intake with prevailing recommendations. Results: Players exhibited no significant difference between energy intake (boys = 3062 [340.9] and girls = 2243 [320.3] kcal·d−1) and expenditure (boys = 2875 [717.3] and girls = 2442 [350.3] kcal·d−1). Across age groups, the Under-12 boys showed positive energy balance as against energy deficits in Under-16. Girls showed energy deficits, although not significant. There were 58% of girls showing energy availability <30 kcal·kg−1 fat-free mass, of which 37% were Under-16 players. Carbohydrates contributed to >60% of energy expenditure among 95.2% boys and 73.7% girls. Among 52.4% boys and 47.4% girls, <25% of energy expenditure was contributed by fat. More than 95% players consumed <1 g·kg−1 carbohydrates pretraining and 100% of them consumed >1.2 g·kg−1 carbohydrates posttraining. Conclusion: Junior soccer players consumed more than recommended carbohydrates in the diet, although not aligning with the pretraining, during training, and posttraining meal requirements. Considering the energy deficits observed among Under-16 players, a suitable dietary modification is warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


Sign in / Sign up

Export Citation Format

Share Document