Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast

Aquaculture ◽  
2006 ◽  
Vol 253 (1-4) ◽  
pp. 433-446 ◽  
Author(s):  
Luiz Drude de Lacerda ◽  
Ariel Gustavo Vaisman ◽  
Luís Parente Maia ◽  
Carlos Augusto Ramos e Silva ◽  
Eugênio Marcos Soares Cunha
2009 ◽  
Vol 9 (12) ◽  
pp. 4091-4114 ◽  
Author(s):  
T. A. Jones ◽  
S. A. Christopher ◽  
J. Quaas

Abstract. Aerosols act as cloud condensation nuclei (CCN) for cloud water droplets, and changes in aerosol concentrations have significant microphysical impacts on the corresponding cloud properties. Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud properties are combined with NCEP Reanalysis data for six different regions around the globe between March 2000 and December 2005 to study the effects of different aerosol, cloud, and atmospheric conditions on the aerosol indirect effect (AIE). Emphasis is placed in examining the relative importance of aerosol concentration, type, and atmospheric conditions (mainly vertical motion) to AIE from region to region. Results show that in most regions, AIE has a distinct seasonal cycle, though the cycle varies in significance and period from region to region. In the Arabian Sea (AS), the six-year mean anthropogenic + dust AIE is −0.27 Wm−2 and is greatest during the summer months (<−2.0 Wm−2) during which aerosol concentrations (from both dust and anthropogenic sources) are greatest. Comparing AIE as a function of thin (LWP<20 gm−2) vs. thick (LWP≥20 gm−2) clouds under conditions of large scale ascent or decent at 850 hPa showed that AIE is greatest for thick clouds during periods of upward vertical motion. In the Bay of Bengal, AIE is negligible owing to less favorable atmospheric conditions, a lower concentration of aerosols, and a non-alignment of aerosol and cloud layers. In the eastern North Atlantic, AIE is weakly positive (+0.1 Wm−2) with dust aerosol concentration being much greater than the anthropogenic or sea salt components. However, elevated dust in this region exists above the maritime cloud layers and does not have a hygroscopic coating, which occurs in AS, preventing the dust from acting as CCN and limiting AIE. The Western Atlantic has a large anthropogenic aerosol concentration transported from the eastern United States producing a modest anthropogenic AIE (−0.46 Wm−2). Anthropogenic AIE is also present off the West African coast corresponding to aerosols produced from seasonal biomass burning (both natural and man-made). Interestingly, atmospheric conditions are not particularly favorable for cloud formation compared to the other regions during the times where AIE is observed; however, clouds are generally thin (LWP<20 gm−2) and concentrated very near the surface. Overall, we conclude that vertical motion, aerosol type, and aerosol layer heights do make a significant contribution to AIE and that these factors are often more important than total aerosol concentration alone and that the relative importance of each differs significantly from region to region.


2018 ◽  
Vol 68 ◽  
pp. 04003
Author(s):  
Ngo Thuy Diem Trang ◽  
Lam Thi Nhu Mo ◽  
Vo Chi Linh ◽  
Hans Brix

The rapid development of whiteleg shrimp farming in the Mekong delta of Vietnam has an adverse impact on the environment due to large amount of nitrogen and phosphorus content in wastewater and pond sludge/sediment. Phytoremediation is a promising technique to use plant for mitigating environmental impacts from intensively whiteleg shrimp culture. Growth responses, nitrogen and phosphorus removal of Typha orientalis and Scirpus littoralis were assessed at three water levels of +15 cm, +30 cm and +45 cm. They were arranged in a completely randomized design with three replications. The plants were supplied wastewater from intensive whiteleg shrimp tanks once every two weeks. Waterlogged assessment was conducted for 71 days. Water levels significantly affected plant growth rate and nutrient removal capacity. S. littoralis grew well with a lower mortality rate and had no statistical reduction of biomass compared to T. orientalis at the highest water level of +45 cm. T. orientalis had the best perfromance in growth and biomass responses to waterlogged at water levels of +15 cm and +30 cm. The results indicated that S. littoralis was the best of choice to grow in waterlogged condition of the shrimp pond for maintaining water quality.


2018 ◽  
Vol 10 (6) ◽  
pp. 291
Author(s):  
Lucas De Sousa Oliveira ◽  
Mirian Cristina Gomes Costa ◽  
Henrique Antunes de Souza ◽  
Julius Blum ◽  
Gustavo Henrique da Silva Albuquerque ◽  
...  

The agricultural farming activities generate organic waste whose indiscriminate deposition can be prejudicial to the environment. However, careful application of these wastes as organic fertilizers it is a possibility to improve soil fertility. This study aimed to confirm the hypotheses that organic wastes produced in various production chains in the semi-arid region of Ceará have contents of nutrients that give them potential as organic fertilizers and, since they are used as organic fertilizers, these residues improve the chemical soil attributes. Nutrient contents were determined at the laboratory and then the wastes were placed in decomposition bags and applied in a Fluvic Neosol. Soil samples were collected in the 0-0.10 m layer 90 days after wastes were applied. The residues presented nutrient contents that allow their use as organic fertilizers, except the shrimp farming residue that presented sodium content above that allowed by legislation, resulting also in higher element contents in the soil. In addition, the shrimp farming showed the lowest organic carbon content in relation to others chemical elements. The residues of the poultry industry and the compound made with residues of small ruminants presented the highest of nitrogen and phosphorus levels. The carnauba residue was associated with phosphorus immobilization because it presented C/P ratio higher than 300.


2001 ◽  
Vol 61 (2) ◽  
pp. 217-238 ◽  
Author(s):  
E. Y. MUTO ◽  
L. S. H. SOARES ◽  
R. GOITEIN

The feeding habits of Rioraja agassizii (syn. Raja agassizii) and Psammobatis extenta (syn. Psammobatis glansdissimilis) of the South-eastern Brazilian coast were studied by means of stomach content analysis. The samples were obtained on eight seasonal oceanographic cruises, carried out between October 1985 and July 1987. The importance of each food item was evaluated on the basis of the Index of Relative Importance and the feeding similarity by Percentage of Similarity. The results indicated that both species are benthic feeders, preying mainly on Crustacea, especially Amphipoda, Caridea and Brachyura. Teleostei were also important for R. agassizii. Seasonal variation of the diet seems to be associated with the availability of the prey, whose distribution and abundance are related to the dynamics of the water masses of the region. Juveniles and adults of P. extenta exploited the same resources while juveniles and adults of R. agassizii presented low diet similarity during most of the year. Caridea were an important food for all length classes of R. agassizii, while Amphipoda were for smaller specimens, and Teleostei for larger ones. The feeding overlap between the two species was higher during autumn 1986, winter 1986 and winter 1987.


2011 ◽  
Vol 11 (2) ◽  
pp. 3627-3661 ◽  
Author(s):  
G. G. Pfister ◽  
J. Avise ◽  
C. Wiedinmyer ◽  
D. P. Edwards ◽  
L. K. Emmons ◽  
...  

Abstract. Air pollution is of concern in many parts of California and is impacted by both local emissions and also by pollution inflow from the Pacific. In this study, we use the regional chemical transport model WRF-Chem V3.2 to examine the CO budget over California. We include model CO tracers for different emission sources in the model, which allow estimating the relative importance of local sources versus pollution inflow on the distribution of CO at the surface and in the free troposphere. The focus of our study is on the 15 June–15 July 2008 time period, which coincides with the aircraft deployment of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission over California. Model simulations are evaluated using these aircraft observations as well as satellite retrievals and surface observations of CO. Evaluation results show that the model overall predicts the observed CO fields well, but points towards an underestimate of CO from the fires in Northern California, which had a strong influence during the study period, and towards a slight overestimate of CO from pollution inflow and local anthropogenic sources. The analysis of the CO budget over California reveals that inflow of CO explains on average 53 ± 21% of surface CO during the study period, compared to 22 ± 18% for local anthropogenic sources and 18 ± 22% for fires. In the free troposphere, the average CO contributions are estimated as 78 ± 16% for CO inflow, 6 ± 4% for CO from local anthropogenic sources and 11 ± 13% for CO from fires.


2007 ◽  
Vol 11 (6) ◽  
pp. 1843-1855 ◽  
Author(s):  
F. Caille ◽  
J. L. Riera ◽  
B. Rodríguez-Labajos ◽  
H. Middelkoop ◽  
A. Rosell-Melé

Abstract. Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain), as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC). After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives) for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.


2006 ◽  
Vol 53 (10) ◽  
pp. 75-82 ◽  
Author(s):  
D. Markel ◽  
F. Somma ◽  
B.M. Evans

Lake Kinneret (Sea of Galilee) is the only large surface water body in Israel, encompassing an area of 167 km2 and supplying some 30% of the country's fresh water. Pollution from anthropogenic sources and water abstraction for domestic and agricultural uses has long been threatening the water quality of the lake. Point-source pollution in the watershed has decreased drastically with the development of wastewater treatment. However, diffuse pollution from agricultural activities is still an unresolved issue. In this paper we present an application of AVGWLF (a GIS-based watershed load model) to the Lake Kinneret watershed. The model allows one to simulate daily stream flows and monthly sediment, nitrogen, and phosphorus loads discharged to the lake from the surrounding watershed. Results from simulations yield a satisfactory correspondence between simulated and measured daily water volume. Partition by source of total phosphorus delivered to the lake in the period of 2000–04 confirms the reduction in point source nutrient contribution due to improvement of wastewater treatment facilities in the area. Future management should focus on reduction of nutrients originating from septic systems (point sources) and pasture and cropland areas (diffuse sources). Results from simulations will enable watershed managers to prioritize effective management alternatives for protecting the water quality in the lake.


Sign in / Sign up

Export Citation Format

Share Document