A pioneering approach for non-invasive sex identification of Chinese sturgeon at early stage

Aquaculture ◽  
2021 ◽  
Vol 538 ◽  
pp. 736530
Author(s):  
Kan Xiao ◽  
Hejun Du ◽  
Yacheng Hu ◽  
Xueqing Liu ◽  
Binzhong Wang ◽  
...  
Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2510
Author(s):  
Konrad Górny ◽  
Piotr Kuwałek ◽  
Wojciech Pietrowski

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imteyaz Ahmad Khan ◽  
Safoora Rashid ◽  
Nidhi Singh ◽  
Sumaira Rashid ◽  
Vishwajeet Singh ◽  
...  

AbstractEarly-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.


2020 ◽  
Vol 245 (16) ◽  
pp. 1428-1436
Author(s):  
Zhi-Jun Zhang ◽  
Xing-Guo Song ◽  
Li Xie ◽  
Kang-Yu Wang ◽  
You-Yong Tang ◽  
...  

Circulating exosomal microRNAs (ExmiRNAs) provide an ideal non-invasive method for cancer diagnosis. In this study, we evaluated two circulating ExmiRNAs in NSCLC patients as a diagnostic tool for early-stage non-small lung cancer (NSCLC). The exosomes were characterized by qNano, transmission electron microscopy, and Western blot, and the ExmiRNA expression was measured by microarrays. The differentially expressed miRNAs were verified by RT-qPCR using peripheral blood specimens from NSCLC patients ( n = 276, 0 and I stage: n = 104) and healthy donors ( n = 282). The diagnostic values were measured by receiver operating characteristic (ROC) analysis. The results show that the expression of both ExmiR-20b-5p and ExmiR-3187-5p was drastically reduced in NSCLC patients. The area under the ROC curve (AUC) was determined to be 0.818 and 0.690 for ExmiR-20b-5p and ExmiR-3187-5p, respectively. When these two ExmiRNAs were combined, the AUC increased to 0.848. When the ExmiRNAs were administered with either carcinoembryonic antigen (CEA) or cytokeratin-19-fragment (CYFRA21-1), the AUC was further improved to 0.905 and 0.894, respectively. Additionally, both ExmiR-20b-5p and ExmiR-3187-5p could be used to distinguish early stages NSCLC (0 and I stage) from the healthy controls. The ROC curves showed that the AUCs were 0.810 and 0.673, respectively. Combination of ExmiR-20b-5p and ExmiR-3187-5p enhanced the AUC to 0.838. When CEA and CYFRA21-1 were administered with the ExmiRNAs, the AUCs were improved to 0.930 and 0.928, respectively. In summary, circulating serum exosomal miR-20b-5p and miR-3187-5p could be used as effective, non-invasive biomarkers for the diagnosis of early-stage NSCLC, and the effects were further improved when the ExmiRNAs were combined. Impact statement The high mortality of non-small cell lung cancer (NSCLC) is mainly because the cancer has progressed to a more advanced stage before diagnosis. If NSCLC can be diagnosed at early stages, especially stage 0 or I, the overall survival rate will be largely improved by definitive treatment such as lobectomy. We herein validated two novel circulating serum ExmiRs as diagnostic biomarkers for early-stage NSCLC to fulfill the unmet medical need. Considering the number of specimens in this study, circulating serum exosomal miR-20b-5p and miR-3187-5p are putative NSCLC biomarkers, which need to be further investigated in a larger randomized controlled clinical trial.


Author(s):  
Hamza Abbas Jaffari ◽  
Sumaira Mazhar

Hepatocellular carcinoma (HCC) is a standout amongst the most widely recognized cancers around the world, and just as the alcoholic liver disease it is also progressed by extreme viral hepatitis B or C. At the early stage of the disease, numerous patients are asymptomatic consequently late diagnosis of HCC occurs resulting in expensive surgical resection or transplantation. On the basis of the alpha fetoprotein (AFP) estimation, combined with the ultrasound and other sensitive imaging techniques used, the non-invasive detection systems are available. For early disease diagnosis and its use in the effective treatment of HCC patients, the identification of HCC biomarkers has provided a breakthrough utilizing the molecular genetics and proteomics. In the current article, most recent reports on the protein biomarkers of HBV or HCV-related HCC and their co-evolutionary association with liver cancer are reviewed.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Michael A. Tainsky ◽  
Madhumita Chatterjee ◽  
Nancy K. Levin ◽  
Sorin Draghici ◽  
Judith Abrams

It has become very clear that a single molecular event is inadequate to accurately predict the biology (or pathophysiology) of cancer. Furthermore, using any single molecular event as a biomarker for the early detection of malignancy may not comprehensively identify the majority of individuals with that disease. Therefore, the fact that technologies have arisen that can simultaneously detect several, possibly hundreds, of biomarkers has propelled the field towards the development of multianalyte-based in vitro diagnostic early detection tests for cancer using body fluids such as serum, plasma, sputum, saliva, or urine. These multianalyte tests may be based on the detection of serum autoantibodies to tumor antigens, the presence of cancer-related proteins in serum, or the presence of tumor-specific genomic changes that appear in plasma as free DNA. The implementation of non-invasive diagnostic approaches to detect early stage cancer may provide the physician with evidence of cancer, but the question arises as to how the information will affect the pathway of clinical intervention. The confirmation of a positive result from an in vitro diagnostic cancer test may involve relatively invasive procedures to establish a true cancer diagnosis. If in vitro diagnostic tests are proven to be both specific, i.e. rarely produce false positive results due to unrelated conditions, and sufficiently sensitive, i.e. rarely produce false negative results, then such screening tests offer the potential for early detection and personalized therapeutics using multiple disease-related targets with convenient and non-invasive means. Here we discuss the technical and regulatory barriers inherent in development of clinical multianalyte biomarker assays.


BMC Medicine ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Biyuan Luo ◽  
Fang Ma ◽  
Hao Liu ◽  
Jixiong Hu ◽  
Le Rao ◽  
...  

Abstract Background Aberrant DNA methylation may offer opportunities in revolutionizing cancer screening and diagnosis. We sought to identify a non-invasive DNA methylation-based screening approach using cell-free DNA (cfDNA) for early detection of hepatocellular carcinoma (HCC). Methods Differentially, DNA methylation blocks were determined by comparing methylation profiles of biopsy-proven HCC, liver cirrhosis, and normal tissue samples with high throughput DNA bisulfite sequencing. A multi-layer HCC screening model was subsequently constructed based on tissue-derived differentially methylated blocks (DMBs). This model was tested in a cohort consisting of 120 HCC, 92 liver cirrhotic, and 290 healthy plasma samples including 65 hepatitis B surface antigen-seropositive (HBsAg+) samples, independently validated in a cohort consisting of 67 HCC, 111 liver cirrhotic, and 242 healthy plasma samples including 56 HBsAg+ samples. Results Based on methylation profiling of tissue samples, 2321 DMBs were identified, which were subsequently used to construct a cfDNA-based HCC screening model, achieved a sensitivity of 86% and specificity of 98% in the training cohort and a sensitivity of 84% and specificity of 96% in the independent validation cohort. This model obtained a sensitivity of 76% in 37 early-stage HCC (Barcelona clinical liver cancer [BCLC] stage 0-A) patients. The screening model can effectively discriminate HCC patients from non-HCC controls, including liver cirrhotic patients, asymptomatic HBsAg+ and healthy individuals, achieving an AUC of 0.957(95% CI 0.939–0.975), whereas serum α-fetoprotein (AFP) only achieved an AUC of 0.803 (95% CI 0.758–0.847). Besides detecting patients with early-stage HCC from non-HCC controls, this model showed high capacity for distinguishing early-stage HCC from a high risk population (AUC=0.934; 95% CI 0.905–0.963), also significantly outperforming AFP. Furthermore, our model also showed superior performance in distinguishing HCC with normal AFP (< 20ng ml−1) from high risk population (AUC=0.93; 95% CI 0.892–0.969). Conclusions We have developed a sensitive blood-based non-invasive HCC screening model which can effectively distinguish early-stage HCC patients from high risk population and demonstrated its performance through an independent validation cohort. Trial registration The study was approved by the ethic committee of The Second Xiangya Hospital of Central South University (KYLL2018072) and Chongqing University Cancer Hospital (2019167). The study is registered at ClinicalTrials.gov(#NCT04383353).


2020 ◽  
Author(s):  
Marco Grisi ◽  
Gaurasundar M. Conley ◽  
Kyle J. Rodriguez ◽  
Erika Riva ◽  
Lukas Egli ◽  
...  

AbstractPerforming chemical analysis at the nanoliter (nL) scale is of paramount importance for medicine, drug development, toxicology, and research. Despite the numerous methodologies available, a tool for obtaining chemical information non-invasively is still missing at this scale. Observer effects, sample destruction and complex preparatory procedures remain a necessary compromise1. Among non-invasive spectroscopic techniques, one able to provide holistic and highly resolved chemical information in-vivo is nuclear magnetic resonance (NMR)2,3. For its renowned informative power and ability to foster discoveries and life-saving applications4,5, efficient NMR at microscopic scales is highly sought after6–10, but so far technical limitations could not match the stringent necessities of microbiology, such as biocompatible handling, ease of use, and high throughput. Here we introduce a novel microsystem, which combines CMOS technology with 3D microfabrication, enabling nL NMR as a platform tool for non-invasive spectroscopy of organoids, 3D cell cultures, and early stage embryos. In this study we show its application to microlivers models simulating non-alcoholic fatty liver disease (NAFLD), demonstrating detection of lipid metabolism dynamics in a time frame of 14 days based on 117 measurements of single 3D human liver microtissues.


Sign in / Sign up

Export Citation Format

Share Document