Effect of rotor axial blade loading distribution on compressor stability

2021 ◽  
pp. 107230
Author(s):  
Dengke Xu ◽  
Xu Dong ◽  
Chenghua Zhou ◽  
Dakun Sun ◽  
Xingmin Gui ◽  
...  
Keyword(s):  
1998 ◽  
Vol 120 (4) ◽  
pp. 705-713 ◽  
Author(s):  
S. T. Hsu ◽  
A. M. Wo

This paper demonstrates reduction of stator unsteady loading due to forced response in a large-scale, low-speed, rotor/stator/rotor axial compressor rig by clocking the downstream rotor. Data from the rotor/stator configuration showed that the stator response due to the upstream vortical disturbance reaches a maximum when the wake impinges against the suction surface immediately downstream of the leading edge. Results from the stator/rotor configuration revealed that the stator response due to the downstream potential disturbance reaches a minimum with a slight time delay after the rotor sweeps pass the stator trailing edge. For the rotor/stator/rotor configuration, with Gap1 = 10 percent chord and Gap2 = 30 percent chord, results showed a 60 percent reduction in the stator force amplitude by clocking the downstream rotor so that the time occurrence of the maximum force due to the upstream vortical disturbance coincides with that of the minimum force due to the downstream potential disturbance. This is the first time, the authors believe, that beneficial use of flow unsteadiness is definitively demonstrated to reduce the blade unsteady loading.


Author(s):  
Hidekazu Kodama ◽  
Masanobu Namba

A lifting surface theory is developed to predict the unsteady three-dimensional aerodynamic characteristics for a rotating subsonic annular cascade of swept blades. A discrete element method is used to solve the integral equation for the unsteady blade loading. Numerical examples are presented to demonstrate effects of the sweep on the blade flutter and on the acoustic field generated by interaction of rotating blades with a convected sinusoidal gust. It is found that increasing the sweep results in decrease of the aerodynamic work on vibrating blades and also remarkable reduction of the modal acoustic power of lower radial orders for both forward and backward sweeps.


Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5 stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien Schlichting (T-S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space∼time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


Author(s):  
Xuwen Qiu ◽  
David Japikse ◽  
Mark Anderson

Flow recirculation at the impeller inlet and outlet is an important feature that affects impeller performance, especially the power consumption at a very low flow rate. Although the mechanisms for this flow phenomenon have been studied, a practical model is needed for meanline modeling of impeller off-design performance. In this paper, a meanline recirculation model is proposed. At the inlet, the recirculation zone acts as area blockage to relieve the large incidence of the active flow at a low flow rate. The size of the blockage is estimated through a critical area ratio of an artificial “inlet diffuser” from the inlet to throat. The intensity of the reverse flow can then be calculated by assuming a linear velocity profile of meridional velocity in the recirculation zone. At the impeller outlet, a recirculation zone near the suction surface is established to balance the velocity difference on the pressure and suction sides of the blade. The size and the intensity of the outlet recirculation zone is assumed related to blade loading, which can be evaluated based on flow turning and Coriolis force. A few validation cases are presented showing a good comparison between test data and prediction by the model.


Author(s):  
Ahmed Abdelwahab

Vaned diffusers have been used successfully as efficient and compact dynamic pressure recovery devices in industrial centrifugal compressor stages. Typically such diffusers consist of a cascade of two-dimensional blades distributed circumferentially at close proximity to the impeller exit. In this paper three low-solidity diffuser blade geometries are numerically investigated. The first geometry employs variable stagger stacking of similar blade sections along the blade span. The second employs linearly inclined stacking to generate blade lean along the diffuser span. The third geometry employs the conventional two-dimensional low-solidity diffuser geometry with no variable stagger or lean. The variable stagger blade arrangement has the potential of better aligning the diffuser leading edges with the highly non-uniform flow leaving the impeller. Both variable stagger and linearly leaned diffuser blade arrangements, however, have the effect of redistributing the blade loading and flow streamlines in the spanwise direction leading to improved efficiency and pressure recovery capacity of the diffuser. In this paper a description of the proposed diffuser geometries is presented. The results of Three-dimensional Navier-Stokes numerical simulations of the three centrifugal compressor arrangements are discussed. Comparisons between the performance of the two and three-dimensional diffuser blade geometries are presented. The comparisons indeed show that the variable stagger and leaned diffusers present an improvement in the diffuser operating range and pressure recovery capacity over the conventional two-dimensional diffuser geometry.


Author(s):  
T. Valkov ◽  
C. S. Tan

A computational approach, based on a spectral-element Navier-Stokes solver, has been applied to the study of the unsteady flow arising from wake-stator interaction. Direct, as well as turbulence-model calculations, provide insight into the mechanics of the unsteady flow and demonstrate the potential for controlling its effects. The results show that the interaction between the wakes and the stator blades produces a characteristic pattern of vortical disturbances, which have been correlated to the pressure fluctuations. Within the stator passage, the wakes migrate towards the pressure surface where they evolve into counter-rotating vortices. These vortices are the dominant source of disturbances over the pressure surface of the stator blade. Over the suction surface of the stator blade, the disturbances are due to the distortion and detachment of boundary layer fluid. They can be reduced by tailoring the blade loading or by applying non-uniform suction.


Author(s):  
Charles H. O. Lombard ◽  
Daniel N. J. Els ◽  
Jacques Muiyser ◽  
Albert Zapke

South Africa’s coal-fired power stations use super heated steam to drive generator turbines. In arid regions, air-cooled condensers (ACCs) are used to condense the process steam. These ACCs consists of an array of over 200 axial flow fans, each driven by a motor via a reduction gearbox. Distorted fan inlet air flow conditions cause transient blade loading, which results in variations in output shaft bending and torque. A measurement project was conducted where the input and output shaft of such a gearbox were instrumented with strain gauges and wireless bridge amplifiers. Gearbox shaft speed and vibration were also measured. Torsional and bending strains were measured for a variety of operational conditions, where correlations were seen between gearbox loading and wind conditions. The input side experienced no unexpected loads from the motor or changing wind conditions, whereas output shaft loading was influenced by the latter. Digital filters were applied to identify specific bending components, such as the influence of fan hub misalignment and dynamic blade loading. Reverse loading of the gearbox was measured during the fan stop period, and vibration analysis revealed torsional and gearbox vibrations. This investigation documented reliable full scale ACC gearbox loads.


1967 ◽  
Vol 9 (4) ◽  
pp. 265-277 ◽  
Author(s):  
A. D. S. Carter

The layout of a hovercraft leads naturally to the choice of a radial outward flow fan, but the aerodynamic requirements are more stringent than those normally associated with industrial fans. In this paper a blade loading criterion used extensively in axial flow compressor practice has been adapted to the more general case of radial flow fans. Using this criterion maximum fluid deflections and maximum temperature rise coefficients have been calculated. It is shown that fluid deflections in radial fans should be substantially lower than those in axial flow machines. For high work output the ratio of rotor outside diameter to rotor inside diameter should be as close to unity as is mechanically possible. Inlet guide vanes would be of no benefit to the conventional industrial type centrifugal fan, but for such applications as hovercraft inlet guide vanes could be most beneficial. The paper outlines those areas in which further research is necessary fully to confirm the approach, and hence the quantitative values, given in this paper.


Author(s):  
Ali Arshad ◽  
Qiushi Li ◽  
Simin Li ◽  
Tianyu Pan

Experimental investigations of the effect of inlet blade loading on the rotating stall inception process are carried out on a single-stage low-speed axial compressor. Temporal pressure signals from the six high response pressure transducers are used for the analysis. Pressure variations at the hub are especially recorded during the stall inception process. Inlet blade loading is altered by installing metallic meshed distortion screens at the rotor upstream. Three sets of experiments are performed for the comparison of results, i.e. uniform inlet flow, tip, and hub distortions, respectively. Regardless of the type of distortion introduced to the inflow, the compressor undergoes a performance drop, which is more severe in the hub distortion case. Under the uniform inlet flow condition, stall inception is caused by the modal type disturbance while the stall precursor switched to spike type due to the highly loaded blade tip. In the presence of high blade loading at the hub, spike disappeared and the compressor once again witnessed a modal type disturbance. Hub pressure fluctuations are observed throughout the process when the stall is caused by a modal wave while no disturbance is noticed at the hub in spike type stall inception. It is believed that the hub flow separation contributes to the modal type of stall inception phenomenon. Results are also supported by the recently developed signal processing techniques for the stall inception study.


1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


Sign in / Sign up

Export Citation Format

Share Document