Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen

Author(s):  
Manuel R. Gonzalez ◽  
Verena Ducret ◽  
Sara Leoni ◽  
Karl Perron
2021 ◽  
Vol 12 ◽  
Author(s):  
Verena Ducret ◽  
Melina Abdou ◽  
Catarina Goncalves Milho ◽  
Sara Leoni ◽  
Oriane Martin--Pelaud ◽  
...  

Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.


2021 ◽  
Author(s):  
Verena Ducret ◽  
Melina Abdou ◽  
Catarina Goncalves Milho ◽  
Sara Leoni ◽  
Oriane Martin--Pelaud ◽  
...  

Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptative homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.


2017 ◽  
Vol 2 (3) ◽  
pp. 150-163
Author(s):  
Ekajayanti Kining ◽  
Syamsul Falah ◽  
Novik Nurhidayat

Pseudomonas aeruginosa is one of opportunistic pathogen forming bacterial biofilm. The biofilm sustains the bacterial survival and infections. This study aimed to assess the activity of water extract of papaya leaves on inhibition of cells attachment, growth and degradation of the biofilm using crystal violet (CV) biofilm assay. Research results showed that water extract of papaya leaves contains alkaloids, tanins, flavonoids, and steroids/terpenoids and showed antibacterial activity and antibiofilm against P. aeruginosa. Addition of extract can inhibit the cell attachment and was able to degrade the biofilm of 40.92% and 48.058% respectively at optimum conditions: extract concentration of 25% (v/v), temperature 37.5 °C and contact time 45 minutes. With a concentration of 25% (v/v), temperature of 50 °C and the contact time of 3 days, extract of papaya leaves can inhibit the growth of biofilms of 39.837% v/v.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2008 ◽  
Vol 190 (8) ◽  
pp. 2790-2803 ◽  
Author(s):  
Matthew A. Oberhardt ◽  
Jacek Puchałka ◽  
Kimberly E. Fryer ◽  
Vítor A. P. Martins dos Santos ◽  
Jason A. Papin

ABSTRACT Pseudomonas aeruginosa is a major life-threatening opportunistic pathogen that commonly infects immunocompromised patients. This bacterium owes its success as a pathogen largely to its metabolic versatility and flexibility. A thorough understanding of P. aeruginosa's metabolism is thus pivotal for the design of effective intervention strategies. Here we aim to provide, through systems analysis, a basis for the characterization of the genome-scale properties of this pathogen's versatile metabolic network. To this end, we reconstructed a genome-scale metabolic network of Pseudomonas aeruginosa PAO1. This reconstruction accounts for 1,056 genes (19% of the genome), 1,030 proteins, and 883 reactions. Flux balance analysis was used to identify key features of P. aeruginosa metabolism, such as growth yield, under defined conditions and with defined knowledge gaps within the network. BIOLOG substrate oxidation data were used in model expansion, and a genome-scale transposon knockout set was compared against in silico knockout predictions to validate the model. Ultimately, this genome-scale model provides a basic modeling framework with which to explore the metabolism of P. aeruginosa in the context of its environmental and genetic constraints, thereby contributing to a more thorough understanding of the genotype-phenotype relationships in this resourceful and dangerous pathogen.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer M. Peña ◽  
Samantha M. Prezioso ◽  
Kirsty A. McFarland ◽  
Tracy K. Kambara ◽  
Kathryn M. Ramsey ◽  
...  

AbstractIn Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.


2005 ◽  
Vol 187 (3) ◽  
pp. 829-839 ◽  
Author(s):  
Poney Chiang ◽  
Marc Habash ◽  
Lori L. Burrows

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2612-2619 ◽  
Author(s):  
Lisa K. Nelson ◽  
Genevieve H. D'Amours ◽  
Kimberley M. Sproule-Willoughby ◽  
Douglas W. Morck ◽  
Howard Ceri

Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.


Nature ◽  
2000 ◽  
Vol 406 (6799) ◽  
pp. 959-964 ◽  
Author(s):  
C. K. Stover ◽  
X. Q. Pham ◽  
A. L. Erwin ◽  
S. D. Mizoguchi ◽  
P. Warrener ◽  
...  

1980 ◽  
Vol 29 (3) ◽  
pp. 1146-1151 ◽  
Author(s):  
D E Woods ◽  
D C Straus ◽  
W G Johanson ◽  
V K Berry ◽  
J A Bass

Adherence of Pseudomonas aeruginosa organisms to the upper respiratory epithelium of seriously ill patients in vitro is correlated with subsequent colonization of the respiratory tract by this opportunistic pathogen. The role of pili in the attachment to epithelial cells of P. aeruginosa was studied in an in vitro system employing human buccal epithelial cells and P. aeruginosa pretreated by various means. Pretreatment of the bacteria with proteases, heat, or Formalin caused a significant decrease in adherence. A decrease when compared with controls was also noted in the adherence of P. aeruginosa organisms to buccal epithelial cells preincubated with purified pili prepared from the strain used for adherence testing; however, pili prepared from a heterologous strain failed to block adherence. Similar results were obtained in serological studies when antisera to purified pili prepared from the strain used for adherence testing decreased adherence, whereas heterologous antiserum to pili did not decrease adherence. From these results it appears that pili mediate the adherence of P. aeruginosa organisms to human buccal epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document