A vertebrate model for the study of lipid binding/transfer protein function: Conservation of OSBP-related proteins between zebrafish and human

2014 ◽  
Vol 446 (3) ◽  
pp. 675-680 ◽  
Author(s):  
You Zhou ◽  
Gerd Wohlfahrt ◽  
Jere Paavola ◽  
Vesa M. Olkkonen
2020 ◽  
Vol 5 (3) ◽  
pp. 96-100
Author(s):  
Saeid Morovvati ◽  
Nima Kazemi Koohbanani ◽  
Iman Salahshouri Far ◽  
Fatemeh Karami

Introduction: Coronary artery diseases (CAD) are still among the top causes of death in most populations. The polymorphisms of the cholesteryl ester transfer protein (CETP) gene can influence the risk of CAD through modulating cholesterol metabolism. In this regard, the current study aimed to determine the role of the 2 important CETP gene polymorphisms in CAD patients. Methods: To this end, DNA was extracted from the whole blood of 100 CAD patients and 100 healthy controls and then subjected to polymerase chain reaction-restriction fragment length polymorphism for the genotyping of rs5882 and rs708272 polymorphisms.Results: Based on the results, no meaningful association was found between rs5882 and rs708272 polymorphisms, neither separately nor in combination, and the risk of CAD. However, the risk of CAD significantly increased in male rs5882 polymorphism carriers (P = 0.01). Finally, no significant association was demonstrated between serum high-density lipoprotein levels and the genotypes or alleles of neither rs5882 nor rs708272 polymorphism. Conclusion: Despite the finding regarding the lack of an association between CAD and the studied polymorphisms of the CETP gene, the importance of those variants in CETP protein function and CAD pathogenesis warrants further investigation on larger populations.


Author(s):  
Bazhena Bahatyrevich-Kharitonik ◽  
Rafael Medina-Guzman ◽  
Alicia Flores-Cortes ◽  
Marta García-Cruzado ◽  
Edel Kavanagh ◽  
...  

Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Aimin Yang ◽  
Supansa Pantoom ◽  
Yao-Wen Wu

Autophagy is a conserved cellular process involved in the elimination of proteins and organelles. It is also used to combat infection with pathogenic microbes. The intracellular pathogen Legionella pneumophila manipulates autophagy by delivering the effector protein RavZ to deconjugate Atg8/LC3 proteins coupled to phosphatidylethanolamine (PE) on autophagosomal membranes. To understand how RavZ recognizes and deconjugates LC3-PE, we prepared semisynthetic LC3 proteins and elucidated the structures of the RavZ:LC3 interaction. Semisynthetic LC3 proteins allowed the analysis of structure-function relationships. RavZ extracts LC3-PE from the membrane before deconjugation. RavZ initially recognizes the LC3 molecule on membranes via its N-terminal LC3-interacting region (LIR) motif. The RavZ α3 helix is involved in extraction of the PE moiety and docking of the acyl chains into the lipid-binding site of RavZ that is related in structure to that of the phospholipid transfer protein Sec14. Thus, Legionella has evolved a novel mechanism to specifically evade host autophagy.


2020 ◽  
Author(s):  
Kelly M Balmant ◽  
Sheldon R Lawrence ◽  
Benjamin V Duong ◽  
Fanzhao Zhu ◽  
Ning Zhu ◽  
...  

ABSTRACTRedox-based post-translational modifications (PTMs) involving protein cysteine residues as redox sensors are important to various physiological processes. However, little is known about redox-sensitive proteins in guard cells and their functions in stomatal immunity. In this study, we applied an integrative protein labeling method cysTMTRAQ and identified guard cell proteins that were altered by thiol redox PTMs in response to a bacterial flagellin peptide flg22. In total, eight, seven and 20 potential redox-responsive proteins were identified in guard cells treated with flg22 for 15, 30 and 60 min, respectively. The proteins fall into several functional groups including photosynthesis, lipid binding, oxidation-reduction, and defense. Among the proteins, a lipid transfer protein (LTP)-II was confirmed to be redox-responsive and involved in plant resistance to Pseudomonas syringe pv. tomato DC3000. This study not only creates an inventory of potential redox-sensitive proteins in flg22 signal transduction in guard cells, but also highlights the relevance of the lipid transfer protein in plant defense against the bacterial pathogens.Sentence summaryThiol-redox proteomics identified potential redox sensors important in stomatal immunity, and a lipid transfer protein was characterized to function as a redox sensor in plant immune response.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 764 ◽  
Author(s):  
Eshel Faraggi ◽  
A. Keith Dunker ◽  
Robert L. Jernigan ◽  
Andrzej Kloczkowski

Entropy should directly reflect the extent of disorder in proteins. By clustering structurally related proteins and studying the multiple-sequence-alignment of the sequences of these clusters, we were able to link between sequence, structure, and disorder information. We introduced several parameters as measures of fluctuations at a given MSA site and used these as representative of the sequence and structure entropy at that site. In general, we found a tendency for negative correlations between disorder and structure, and significant positive correlations between disorder and the fluctuations in the system. We also found evidence for residue-type conservation for those residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be allowed. In addition, we found positive correlation for disorder and accessible surface area, validating that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations in the dihedral angles at the original mutated residue and disorder are positively correlated while dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts of the protein with which the disordered site interacts. This is another indication that disordered residues are involved in protein function.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tsung-Ming Hu ◽  
Ying-Chieh Wang ◽  
Chia-Liang Wu ◽  
Shih-Hsin Hsu ◽  
Hsin-Yao Tsai ◽  
...  

ObjectiveSchizophrenia is a chronic debilitating neurobiological disorder of aberrant synaptic connectivity and synaptogenesis. Postsynaptic density (PSD)–related proteins in N-methyl-D-aspartate receptor–postsynaptic signaling complexes are crucial to regulating the synaptic transmission and functions of various synaptic receptors. This study examined the role of PSD-related genes in susceptibility to schizophrenia.MethodsWe resequenced 18 genes encoding the disks large-associated protein (DLGAP), HOMER, neuroligin (NLGN), neurexin, and SH3 and multiple ankyrin repeat domains (SHANK) protein families in 98 schizophrenic patients with family psychiatric history using semiconductor sequencing. We analyzed the protein function of the identified rare schizophrenia-associated mutants via immunoblotting and immunocytochemistry.ResultsWe identified 50 missense heterozygous mutations in 98 schizophrenic patients with family psychiatric history, and in silico analysis revealed some as damaging or pathological to the protein function. Ten missense mutations were absent from the dbSNP database, the gnomAD (non-neuro) dataset, and 1,517 healthy controls from Taiwan BioBank. Immunoblotting revealed eight missense mutants with altered protein expressions in cultured cells compared with the wild type.ConclusionOur findings suggest that PSD-related genes, especially the NLGN, SHANK, and DLGAP families, harbor rare functional mutations that might alter protein expression in some patients with schizophrenia, supporting contributing rare coding variants into the genetic architecture of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document