scholarly journals Neuroprotective effects of Senkyunolide I against glutamate-induced cells death by attenuating JNK/caspase-3 activation and apoptosis

2021 ◽  
Vol 140 ◽  
pp. 111696
Author(s):  
Min Wang ◽  
Hideki Hayashi ◽  
Ichiro Horinokita ◽  
Mayumi Asada ◽  
Yui Iwatani ◽  
...  
2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhanglong Peng ◽  
Supinder Bedi ◽  
Vivek Mann ◽  
Alamelu Sundaresan ◽  
Kohei Homma ◽  
...  

To mimic Alzheimer’s disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bich Na Shin ◽  
Dae Won Kim ◽  
In Hye Kim ◽  
Joon Ha Park ◽  
Ji Hyeon Ahn ◽  
...  

Abstract Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.


2020 ◽  
Vol 10 (3) ◽  
pp. 346-351
Author(s):  
Jianfeng Liu ◽  
Yamei Hu ◽  
Gang Li ◽  
Qianlin Zhang ◽  
Jiewen Zhang

Objective: Bone marrow mononuclear cells (BMMCs) are considered a potential approach to promote the recovery of stroke-induced neurological deficit. However, the exact mechanism of BMMCs in nerve function recovery is still unclear. Methods: Adult Sprague-Dawley (SD) rat models of cerebral ischemia-reperfusion injury was established by using thread method. BMMCs were transplanted into rat models. Neurological deficits were evaluated by Longa score scale. Immunohistochemistry assay were employed to examine the expression of GFAP and Nogo-A around the ischemic foci in the right frontal lobe. Caspase-3 activity was examined by Western Blot. Results: Rats in BMMCs group had lessened neurological deficits and cleaved Caspase-3 expression on day 21 after reper-fusion, as well as higher expression of GFAP [(37.62±2.45) vs. (27.62±1.69) and (38.00±1.85) vs. (27.25±1.83), P < 0.05] and lower expression of Nogo-A [(28.88±2.64) vs. (32.50±1.60) and (23.87±2.36) vs. (32.00±1.85), P < 0.05] on day 14 and 21 after reperfusion. Meanwhile, the expression of Nogo-A on day 21 was lower than that on day 14 after reperfusion [(23.87±2.36) vs. (28.88±2.64), P < 0.05] in BMMCs group. Conclusion: These findings suggested that BMMCs treatment could improve the functional recovery of neurological deficits in rats with MCAO, which was probably related to enhanced expression of GFAP and reduced Nogo-A expression and Caspase-3 activity in the ischemic brain tissues.


Endocrinology ◽  
2008 ◽  
Vol 149 (1) ◽  
pp. 367-379 ◽  
Author(s):  
Chandramohan Wakade ◽  
Mohammad M. Khan ◽  
Liesl M. De Sevilla ◽  
Quan-Guang Zhang ◽  
Virendra B. Mahesh ◽  
...  

The purpose of this study was to enhance our understanding of the mechanisms of neuronal death after focal cerebral ischemia and the neuroprotective effects of tamoxifen (TMX). The phosphorylation state of 31 protein kinases/signaling proteins and superoxide anion (O2−) production in the contralateral and ipsilateral cortex was measured after permanent middle cerebral artery occlusion (pMCAO) in ovariectomized rats treated with placebo or TMX. The study revealed that pMCAO modulated the phosphorylation of a number of kinases/proteins in the penumbra at 2 h after pMCAO. Of significant interest, phospho-ERK1/2 (pERK1/2) was elevated significantly after pMCAO. TMX attenuated the elevation of pERK1/2, an effect correlated with reduced infarct size. In situ detection of O2− production showed a significant elevation at 1–2 h after pMCAO in the ischemic cortex with enhanced oxidative damage detected at 24 h. ERK activation may be downstream of free radicals, a suggestion supported by the findings that cells positive for O2− had high pERK activation and that a superoxide dismutase (SOD) mimetic, tempol, significantly attenuated pERK activation after MCAO. TMX treatment significantly reduced the MCAO-induced elevation of O2− production, oxidative damage, and proapoptotic caspase-3 activation. Additionally, pMCAO induced a significant reduction in the levels of manganese SOD (MnSOD), which scavenge O2−, an effect largely prevented by TMX treatment, thus providing a potential mechanistic basis for the antioxidant effects of TMX. As a whole, these studies suggest that TMX neuroprotection may be achieved via an antioxidant mechanism that involves enhancement of primarily MnSOD levels, with a corresponding reduction of O2− production, and downstream kinase and caspase-3 activation.


2020 ◽  
Author(s):  
Elif Nur Yilmaz ◽  
Sadik Bay ◽  
Gurkan Ozturk ◽  
Mehmet Hikmet Ucisik

Abstract Background Curcumin, a polyphenol isolated from the rhizomes of turmeric, holds a great potential as a neuroprotective agent along with its anti-inflammatory and antioxidant characteristics. Its poor bioavailability and low stability in water lie as foremost restraints against the clinical use. This study aims at investigating the neuroprotective effect of curcumin on axonal injury by delivering the lipophilic polyphenol to primary hippocampal neuron by means of a lipid-based drug delivery system, named emulsomes. Methods To study the neuroregeneration on ex vivo, an injury model was established through single-cell laser axotomy on hippocampal neurites. Upon treatment with curcumin-loaded emulsomes (CurcuEmulsomes), curcumin and CurcuEmulsome uptake into neurons were verified by 3-dimensional z-stack images acquired with confocal microscopy. Neuron survival after axonal injury were tracked by PI and Hoechst staining. Alterations in expression levels of physiological markers such as anti-apoptotic marker Bcl-2, apoptotic marker cleaved caspase 3, neuroprotective marker Wnt3a and the neuronal survival marker mTOR were investigated by immunocytochemistry analyses. Results Results indicated significant improvement in the survival rates of injured neurons upon CurcuEmulsome treatment. Bcl-2 expression became significantly higher for injured neurons treated with curcumin or CurcuEmulsome. Caspase 3 expressions decreased in both curcumin- and CurcuEmulsome-treatments, whereas Wnt3a and mTOR expressions did not alter significantly. Conclusions The established laser-axotomy model was exposed as a reliable methodology to study neurodegenerative models ex vivo. CurcuEmulsomes delivered curcumin to primary hippocampal neurons successfully. Treated with CurcuEmulsomes, injured hippocampal neurons benefit from neuroprotective effects of curcumin in terms of higher survival rate and increased anti-apoptotic marker levels.


Sign in / Sign up

Export Citation Format

Share Document