O20. Resting State Whole Brain Network Activity in Depression From Intracranial EEG Signals

2019 ◽  
Vol 85 (10) ◽  
pp. S113-S114
Author(s):  
Katherine Scangos ◽  
Ankit N. Khambhati ◽  
Patrick Daly ◽  
Alia Shafi ◽  
Heather Dawes ◽  
...  
2020 ◽  
Vol 4 (2) ◽  
pp. 448-466
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

Large-scale patterns of spontaneous whole-brain activity seen in resting-state functional magnetic resonance imaging (rs-fMRI) are in part believed to arise from neural populations interacting through the structural network (Honey, Kötter, Breakspear, & Sporns, 2007 ). Generative models that simulate this network activity, called brain network models (BNM), are able to reproduce global averaged properties of empirical rs-fMRI activity such as functional connectivity (FC) but perform poorly in reproducing unique trajectories and state transitions that are observed over the span of minutes in whole-brain data (Cabral, Kringelbach, & Deco, 2017 ; Kashyap & Keilholz, 2019 ). The manuscript demonstrates that by using recurrent neural networks, it can fit the BNM in a novel way to the rs-fMRI data and predict large amounts of variance between subsequent measures of rs-fMRI data. Simulated data also contain unique repeating trajectories observed in rs-fMRI, called quasiperiodic patterns (QPP), that span 20 s and complex state transitions observed using k-means analysis on windowed FC matrices (Allen et al., 2012 ; Majeed et al., 2011 ). Our approach is able to estimate the manifold of rs-fMRI dynamics by training on generating subsequent time points, and it can simulate complex resting-state trajectories better than the traditional generative approaches.


2019 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

AbstractLarge scale patterns of spontaneous whole brain activity seen in resting state functional Magnetic Resonance Imaging (rsfMRI), are in part believed to arise from neural populations interacting through the structural fiber network [18]. Generative models that simulate this network activity, called Brain Network Models (BNM), are able to reproduce global averaged properties of empirical rsfMRI activity such as functional connectivity (FC) [7, 27]. However, they perform poorly in reproducing unique trajectories and state transitions that are observed over the span of minutes in whole brain data [20]. At very short timescales between measurements, it is not known how much of the variance these BNM can explain because they are not currently synchronized with the measured rsfMRI. We demonstrate that by solving for the initial conditions of BNM from an observed data point using Recurrent Neural Networks (RNN) and integrating it to predict the next time step, the trained network can explain large amounts of variance for the 5 subsequent time points of unseen future trajectory. The RNN and BNM combined system essentially models the network component of rsfMRI, and where future activity is solely based on previous neural activity propagated through the structural network. Longer instantiations of this generative model simulated over the span of minutes can reproduce average FC and the 1/f power spectrum from 0.01 to 0.3 Hz seen in fMRI. Simulated data also contain interesting resting state dynamics, such as unique repeating trajectories, called QPPs [22] that are highly correlated to the empirical trajectory which spans over 20 seconds. Moreover, it exhibits complex states and transitions as seen using k-Means analysis on windowed FC matrices [1]. This suggests that by combining BNMs with RNN to accurately predict future resting state activity at short timescales, it is learning the manifold of the network dynamics, allowing it to simulate complex resting state trajectories at longer time scales. We believe that our technique will be useful in understanding the large-scale functional organization of the brain and how different BNMs recapitulate different aspects of the system dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Simchick ◽  
Kelly M. Scheulin ◽  
Wenwu Sun ◽  
Sydney E. Sneed ◽  
Madison M. Fagan ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


2018 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

AbstractBrain Network Models have become a promising theoretical framework in simulating signals that are representative of whole brain activity such as resting state fMRI. However, it has been difficult to compare the complex brain activity between simulated and empirical data. Previous studies have used simple metrics that surmise coordination between regions such as functional connectivity, and we extend on this by using various different dynamical analysis tools that are currently used to understand resting state fMRI. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the Brain Network Model. We conclude that the dynamic properties that gauge more temporal structure rather than spatial coordination in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole brain activity.


2018 ◽  
Author(s):  
Marjolein Spronk ◽  
Kaustubh Kulkarni ◽  
Jie Lisa Ji ◽  
Brian P. Keane ◽  
Alan Anticevic ◽  
...  

AbstractA wide variety of mental disorders have been associated with resting-state functional network alterations, which are thought to contribute to the cognitive changes underlying mental illness. These observations have seemed to support various theories postulating large-scale disruptions of brain systems in mental illness. However, existing approaches isolate differences in network organization without putting those differences in broad, whole-brain perspective. Using a graph distance measure – connectome-wide correlation – we found that whole-brain resting-state functional network organization in humans is highly similar across a variety of mental diseases and healthy controls. This similarity was observed across autism spectrum disorder, attention-deficit hyperactivity disorder, and schizophrenia. Nonetheless, subtle differences in network graph distance were predictive of diagnosis, suggesting that while functional connectomes differ little across health and disease those differences are informative. Such small network alterations may reflect the fact that most psychiatric patients maintain overall cognitive abilities similar to those of healthy individuals (relative to, e.g., the most severe schizophrenia cases), such that whole-brain functional network organization is expected to differ only subtly even for mental diseases with devastating effects on everyday life. These results suggest a need to reevaluate neurocognitive theories of mental illness, with a role for subtle functional brain network changes in the production of an array of mental diseases.


2020 ◽  
Author(s):  
Giovanni Rabuffo ◽  
Jan Fousek ◽  
Christophe Bernard ◽  
Viktor Jirsa

AbstractAt rest, mammalian brains display a rich complex spatiotemporal behavior, which is reminiscent of healthy brain function and has provided nuanced understandings of several major neurological conditions. Despite the increasingly detailed phenomenological documentation of the brain’s resting state, its principle underlying causes remain unknown. To establish causality, we link structurally defined features of a brain network model to neural activation patterns and their variability. For the mouse, we use a detailed connectome-based model and simulate the resting state dynamics for neural sources and whole brain imaging signals (Blood-Oxygen-Level-Dependent (BOLD), Electroencephalography (EEG)). Under conditions of near-criticality, characteristic neuronal cascades form spontaneously and propagate through the network. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain. During these co-activation episodes, long-lasting functional networks emerge giving rise to epochs of stable resting state networks correlated in time. Sets of neural cascades are typical for a resting state network, but different across. We experimentally confirm the existence and stability of functional connectivity epochs comprising BOLD co-activation bursts in mice (N=19). We further demonstrate the leading role of the neuronal cascades in a simultaneous EEG/fMRI data set in humans (N=15), explaining a large part of the variability of functional connectivity dynamics. We conclude that short-lived neuronal cascades are a major robust dynamic component contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.


2018 ◽  
Vol 2 (suppl_1) ◽  
pp. 402-402
Author(s):  
J Zhou ◽  
O Lo ◽  
M Halko ◽  
R Harrison ◽  
L Lipsitz ◽  
...  

Author(s):  
Davide Valeriani ◽  
Kristina Simonyan

Speech production relies on the orchestrated control of multiple brain regions. The specific, directional influences within these networks remain poorly understood. We used regression dynamic causal modelling to infer the whole-brain directed (effective) connectivity from functional magnetic resonance imaging data of 36 healthy individuals during the production of meaningful English sentences and meaningless syllables. We identified that the two dynamic connectomes have distinct architectures that are dependent on the complexity of task production. The speech was regulated by a dynamic neural network, the most influential nodes of which were centred around superior and inferior parietal areas and influenced the whole-brain network activity via long-ranging coupling with primary sensorimotor, prefrontal, temporal and insular regions. By contrast, syllable production was controlled by a more compressed, cost-efficient network structure, involving sensorimotor cortico-subcortical integration via superior parietal and cerebellar network hubs. These data demonstrate the mechanisms by which the neural network reorganizes the connectivity of its influential regions, from supporting the fundamental aspects of simple syllabic vocal motor output to multimodal information processing of speech motor output. This article is part of the theme issue ‘Vocal learning in animals and humans’.


2020 ◽  
Author(s):  
Marielle Greber ◽  
Carina Klein ◽  
Simon Leipold ◽  
Silvano Sele ◽  
Lutz Jäncke

AbstractThe neural basis of absolute pitch (AP), the ability to effortlessly identify a musical tone without an external reference, is poorly understood. One of the key questions is whether perceptual or cognitive processes underlie the phenomenon as both sensory and higher-order brain regions have been associated with AP. One approach to elucidate the neural underpinnings of a specific expertise is the examination of resting-state networks.Thus, in this paper, we report a comprehensive functional network analysis of intracranial resting-state EEG data in a large sample of AP musicians (n = 54) and non-AP musicians (n = 51). We adopted two analysis approaches: First, we applied an ROI-based analysis to examine the connectivity between the auditory cortex and the dorsolateral prefrontal cortex (DLPFC) using several established functional connectivity measures. This analysis is a replication of a previous study which reported increased connectivity between these two regions in AP musicians. Second, we performed a whole-brain network-based analysis on the same functional connectivity measures to gain a more complete picture of the brain regions involved in a possibly large-scale network supporting AP ability.In our sample, the ROI-based analysis did not provide evidence for an AP-specific connectivity increase between the auditory cortex and the DLPFC. In contrast, the whole-brain analysis revealed three networks with increased connectivity in AP musicians comprising nodes in frontal, temporal, subcortical, and occipital areas. Commonalities of the networks were found in both sensory and higher-order brain regions of the perisylvian area. Further research will be needed to confirm these exploratory results.


2020 ◽  
Vol 31 (1) ◽  
pp. 547-561
Author(s):  
Marjolein Spronk ◽  
Brian P Keane ◽  
Takuya Ito ◽  
Kaustubh Kulkarni ◽  
Jie Lisa Ji ◽  
...  

Abstract A wide variety of mental disorders have been associated with resting-state functional network alterations, which are thought to contribute to the cognitive changes underlying mental illness. These observations appear to support theories postulating large-scale disruptions of brain systems in mental illness. However, existing approaches isolate differences in network organization without putting those differences in a broad, whole-brain perspective. Using a graph distance approach—connectome-wide similarity—we found that whole-brain resting-state functional network organization is highly similar across groups of individuals with and without a variety of mental diseases. This similarity was observed across autism spectrum disorder, attention-deficit hyperactivity disorder, and schizophrenia. Nonetheless, subtle differences in network graph distance were predictive of diagnosis, suggesting that while functional connectomes differ little across health and disease, those differences are informative. These results suggest a need to reevaluate neurocognitive theories of mental illness, with a role for subtle functional brain network changes in the production of an array of mental diseases. Such small network alterations suggest the possibility that small, well-targeted alterations to brain network organization may provide meaningful improvements for a variety of mental disorders.


Sign in / Sign up

Export Citation Format

Share Document