scholarly journals The dynamic connectome of speech control

Author(s):  
Davide Valeriani ◽  
Kristina Simonyan

Speech production relies on the orchestrated control of multiple brain regions. The specific, directional influences within these networks remain poorly understood. We used regression dynamic causal modelling to infer the whole-brain directed (effective) connectivity from functional magnetic resonance imaging data of 36 healthy individuals during the production of meaningful English sentences and meaningless syllables. We identified that the two dynamic connectomes have distinct architectures that are dependent on the complexity of task production. The speech was regulated by a dynamic neural network, the most influential nodes of which were centred around superior and inferior parietal areas and influenced the whole-brain network activity via long-ranging coupling with primary sensorimotor, prefrontal, temporal and insular regions. By contrast, syllable production was controlled by a more compressed, cost-efficient network structure, involving sensorimotor cortico-subcortical integration via superior parietal and cerebellar network hubs. These data demonstrate the mechanisms by which the neural network reorganizes the connectivity of its influential regions, from supporting the fundamental aspects of simple syllabic vocal motor output to multimodal information processing of speech motor output. This article is part of the theme issue ‘Vocal learning in animals and humans’.

2018 ◽  
Author(s):  
Matthieu Gilson ◽  
Nikos E. Kouvaris ◽  
Gustavo Deco ◽  
Jean-François Mangin ◽  
Cyril Poupon ◽  
...  

AbstractNeuroimaging techniques such as MRI have been widely used to explore the associations between brain areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional connectivity (FC) measures the correlation between the activity of brain regions. These connectivity measures have been much studied using network theory in order to uncover the distributed organization of brain structures, in particular FC for task-specific brain communication. However, the application of network theory to study FC matrices is often “static” despite the dynamic nature of time series obtained from fMRI. The present study aims to overcome this limitation by introducing a network-oriented analysis applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics. Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-EC as well as input properties (similar to local excitabilities). The network analysis is then based on the Green function (or network impulse response) that describes the interactions between nodes across time for the estimated dynamics. This model-based approach provides time-dependent graph-like descriptor, named communicability, that characterize the roles that either nodes or connections play in the propagation of activity within the network. They can be used at both global and local levels, and also enables the comparison of estimates from real data with surrogates (e.g. random network or ring lattice). In contrast to classical graph approaches to study SC or FC, our framework stresses the importance of taking the temporal aspect of fMRI signals into account. Our results show a merging of functional communities over time (in which input properties play a role), moving from segregated to global integration of the network activity. Our formalism sets a solid ground for the analysis and interpretation of fMRI data, including task-evoked activity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254588
Author(s):  
Guoping Xu ◽  
Yogesh Rathi ◽  
Joan A. Camprodon ◽  
Hanqiang Cao ◽  
Lipeng Ning

Transcranial magnetic stimulation (TMS) is a non-invasive neurostimulation technique that is increasingly used in the treatment of neuropsychiatric disorders and neuroscience research. Due to the complex structure of the brain and the electrical conductivity variation across subjects, identification of subject-specific brain regions for TMS is important to improve the treatment efficacy and understand the mechanism of treatment response. Numerical computations have been used to estimate the stimulated electric field (E-field) by TMS in brain tissue. But the relative long computation time limits the application of this approach. In this paper, we propose a deep-neural-network based approach to expedite the estimation of whole-brain E-field by using a neural network architecture, named 3D-MSResUnet and multimodal imaging data. The 3D-MSResUnet network integrates the 3D U-net architecture, residual modules and a mechanism to combine multi-scale feature maps. It is trained using a large dataset with finite element method (FEM) based E-field and diffusion magnetic resonance imaging (MRI) based anisotropic volume conductivity or anatomical images. The performance of 3D-MSResUnet is evaluated using several evaluation metrics and different combinations of imaging modalities and coils. The experimental results show that the output E-field of 3D-MSResUnet provides reliable estimation of the E-field estimated by the state-of-the-art FEM method with significant reduction in prediction time to about 0.24 second. Thus, this study demonstrates that neural networks are potentially useful tools to accelerate the prediction of E-field for TMS targeting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenfu Wen ◽  
Marie-France Marin ◽  
Jennifer Urbano Blackford ◽  
Zhe Sage Chen ◽  
Mohammed R. Milad

AbstractTranslational models of fear conditioning and extinction have elucidated a core neural network involved in the learning, consolidation, and expression of conditioned fear and its extinction. Anxious or trauma-exposed brains are characterized by dysregulated neural activations within regions of this fear network. In this study, we examined how the functional MRI activations of 10 brain regions commonly activated during fear conditioning and extinction might distinguish anxious or trauma-exposed brains from controls. To achieve this, activations during four phases of a fear conditioning and extinction paradigm in 304 participants with or without a psychiatric diagnosis were studied. By training convolutional neural networks (CNNs) using task-specific brain activations, we reliably distinguished the anxious and trauma-exposed brains from controls. The performance of models decreased significantly when we trained our CNN using activations from task-irrelevant brain regions or from a brain network that is irrelevant to fear. Our results suggest that neuroimaging data analytics of task-induced brain activations within the fear network might provide novel prospects for development of brain-based psychiatric diagnosis.


2018 ◽  
Vol 1 ◽  
Author(s):  
Yoed N. Kenett ◽  
Roger E. Beaty ◽  
John D. Medaglia

AbstractRumination and impaired inhibition are considered core characteristics of depression. However, the neurocognitive mechanisms that contribute to these atypical cognitive processes remain unclear. To address this question, we apply a computational network control theory approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how network control theory relates to individual differences in subclinical depression. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that subclinical depression is negatively related to higher integration abilities in the right anterior insula, replicating and extending previous studies implicating atypical switching between the default mode and Executive Control Networks in depression. We also find that subclinical depression is related to the ability to “drive” the brain system into easy to reach neural states in several brain regions, including the bilateral lingual gyrus and lateral occipital gyrus. These findings highlight brain regions less known in their role in depression, and clarify their roles in driving the brain into different neural states related to depression symptoms.


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


2019 ◽  
Author(s):  
Ranmal A. Samarasinghe ◽  
Osvaldo A. Miranda ◽  
Simon Mitchell ◽  
Isabella Ferando ◽  
Momoko Watanabe ◽  
...  

ABSTRACTHuman brain organoids represent a powerful tool for the study of human neurological diseases particularly those that impact brain growth and structure. However, many neurological diseases lack obvious anatomical abnormalities, yet significantly impact neural network functions, raising the question of whether organoids possess sufficient neural network architecture and complexity to model these conditions. Here, we explore the network level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex oscillatory network behaviors reminiscent of intact brain preparations. We further demonstrate strikingly abnormal epileptiform network activity in organoids derived from a Rett Syndrome patient despite only modest anatomical differences from isogenically matched controls, and rescue with an unconventional neuromodulatory drug Pifithrin-α. Together, these findings provide an essential foundation for the utilization of human brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


2021 ◽  
Author(s):  
Ruben Sanchez-Romero ◽  
Takuya Ito ◽  
Ravi D. Mill ◽  
Stephen José Hanson ◽  
Michael W. Cole

AbstractBrain activity flow models estimate the movement of task-evoked activity over brain connections to help explain the emergence of task-related functionality. Activity flow estimates have been shown to accurately predict task-evoked brain activations across a wide variety of brain regions and task conditions. However, these predictions have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. Starting from Pearson correlation (the current field standard), we progress from FC measures with poor to excellent causal grounding, demonstrating a continuum of causal validity using simulations and empirical fMRI data. Finally, we apply a causal FC method to a dorsolateral prefrontal cortex region, demonstrating causal network mechanisms contributing to its strong activation during a 2-back (relative to a 0-back) working memory task. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.Highlights-Activity flow models provide insight into how cognitive neural effects emerge from brain network interactions.-Functional connectivity methods grounded in causal principles facilitate mechanistic interpretations of task activity flow models.-Mechanistic activity flow models accurately predict task-evoked neural effects across a wide variety of brain regions and cognitive tasks.


2020 ◽  
Author(s):  
Marielle Greber ◽  
Carina Klein ◽  
Simon Leipold ◽  
Silvano Sele ◽  
Lutz Jäncke

AbstractThe neural basis of absolute pitch (AP), the ability to effortlessly identify a musical tone without an external reference, is poorly understood. One of the key questions is whether perceptual or cognitive processes underlie the phenomenon as both sensory and higher-order brain regions have been associated with AP. One approach to elucidate the neural underpinnings of a specific expertise is the examination of resting-state networks.Thus, in this paper, we report a comprehensive functional network analysis of intracranial resting-state EEG data in a large sample of AP musicians (n = 54) and non-AP musicians (n = 51). We adopted two analysis approaches: First, we applied an ROI-based analysis to examine the connectivity between the auditory cortex and the dorsolateral prefrontal cortex (DLPFC) using several established functional connectivity measures. This analysis is a replication of a previous study which reported increased connectivity between these two regions in AP musicians. Second, we performed a whole-brain network-based analysis on the same functional connectivity measures to gain a more complete picture of the brain regions involved in a possibly large-scale network supporting AP ability.In our sample, the ROI-based analysis did not provide evidence for an AP-specific connectivity increase between the auditory cortex and the DLPFC. In contrast, the whole-brain analysis revealed three networks with increased connectivity in AP musicians comprising nodes in frontal, temporal, subcortical, and occipital areas. Commonalities of the networks were found in both sensory and higher-order brain regions of the perisylvian area. Further research will be needed to confirm these exploratory results.


Author(s):  
Caglar Cakan ◽  
Nikola Jajcay ◽  
Klaus Obermayer

Abstractneurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain. neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of whole-brain models.


2017 ◽  
Author(s):  
Matthieu Gilson

AbstractSince the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping - determined by EC - for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data - movie viewing versus resting state - illustrates that changes in excitability and changes in brain coordination go hand in hand.


Sign in / Sign up

Export Citation Format

Share Document