Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: construction of bacterial consortium and their metabolic division of labor

2021 ◽  
pp. 126377
Author(s):  
Xuerui Bai ◽  
Maiqian Nie ◽  
Zhenjun Diwu ◽  
Lei Wang ◽  
Hongyun Nie ◽  
...  
2020 ◽  
Vol 7 (2) ◽  
pp. 127-133
Author(s):  
Yalda Basim ◽  
Ghasemali Mohebali ◽  
Sahand Jorfi ◽  
Ramin Nabizadeh ◽  
Mehdi Ahmadi Moghadam ◽  
...  

Background: Biodegradation of hydrocarbon compounds is a great environmental concern due to their toxic nature and ubiquitous occurrence. In this study, biodegradation potential of oily soils was investigated in an oil field using indigenous bacterial consortium. Methods: The bacterial strains present in the contaminated and non-contaminated soils were identified via DNA extraction using 16S rDNA gene sequencing during six months. Furthermore, total petroleum hydrocarbons (TPH) were removed from oil-contaminated soils. The TPH values were determined using a gas chromatograph equipped with a flame ionization detector (GC-FID). Results: The bacterial consortium identified in oil-contaminated soils (case) belonged to the families Halomonadaceae (91.5%) and Bacillaceae (8.5%), which was significantly different from those identified in non-contaminated soils (control) belonging to the families Enterobacteriaceae (84.6%), Paenibacillaceae (6%), and Bacillaceae (9.4%). It was revealed that the diversity of bacterial strains was less in oil-contaminated soils and varied significantly between case and control samples. Indigenous bacterial consortium was used in oil-contaminated soils without need for amplification of heterogeneous bacteria and the results showed that the identified bacterial strains could be introduced as a sufficient consortium for biodegradation of oil-contaminated soils with similar texture, which is one of the innovative aspects of this research. Conclusion: An oil-contaminated soil sample with TPH concentration of 1640 mg/kg was subjected to bioremediation during 6 months using indigenous bacterial consortium and a TPH removal efficiency of 28.1% was obtained.


2019 ◽  
Vol 19 (2) ◽  
pp. 347 ◽  
Author(s):  
Abubakar Tuhuloula ◽  
Suprapto Suprapto ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti

Contamination of soil by the activities of exploration, production, and disposal of oil waste into the environment causes serious damage to the environmental ecosystem, the target of processing by the bacteria as a model for remediation of oil contaminated site. Thus, the study was focused on determining the biodegradation percentage of extractable petroleum hydrocarbons as a function of the oil concentration. This research was conducted in a slurry bioreactor with mixed contaminated soil to water ratio of 20:80 (wt.%). A consortium of Bacillus cereus and Pseudomonas putida bacteria 10% (v/v) and 15% (v/v) with the ratio of 2:3, 1:1, and 3:2 was inserted into the slurry bioreactor and a single reactor was used as a control. The result of identification with an initial concentration of extractable petroleum hydrocarbons of 299.53 ng/µL, after 49 days of incubation for bacterial consortium 10% (v/v), the concentration was reduced to 85.31; 32.43; 59.74; and 112.22 ng/µL respectively and the biodegradation percentage was 71.5; 89.17; 80.05; and 62.54%. As for the bacterial consortium concentration of 15% (v/v) with the same ratio and control, the effluent concentration was 12.48; 7.72; 18.93 ng/µL, respectively or the biodegradation percentage was 95.83; 97.42; 93.68%.


2020 ◽  
Vol 8 (4) ◽  
pp. 602 ◽  
Author(s):  
Dimitri J. Dagher ◽  
Ivan E. de la Providencia ◽  
Frédéric E. Pitre ◽  
Marc St-Arnaud ◽  
Mohamed Hijri

Arbuscular mycorrhizal fungi (AMF) have been shown to reduce plant stress and improve their health and growth, making them important components of the plant-root associated microbiome, especially in stressful conditions such as petroleum hydrocarbons (PHs) contaminated environments. Purposely manipulating the root-associated AMF assemblages in order to improve plant health and modulate their interaction with the rhizosphere microbes could lead to increased agricultural crop yields and phytoremediation performance by the host plant and its root-associated microbiota. In this study, we tested whether repeated inoculations with a Proteobacteria consortium influenced plant productivity and the AMF assemblages associated with the root and rhizosphere of four plant species growing either in non-contaminated natural soil or in sediments contaminated with petroleum hydrocarbons. A mesocosm experiment was performed in a randomized complete block design in four blocks with two factors: (1) substrate contamination (contaminated or not contaminated), and (2) inoculation (or not) with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over four months, after which the effect of treatments on plant biomass and petroleum hydrocarbon concentrations in the substrate were determined. MiSeq amplicon sequencing, targeting the 18S rRNA gene, was used to assess AMF community structures in the roots and rhizosphere of plants growing in both contaminated and non-contaminated substrates. We also investigated the contribution of plant identity and biotope (plant roots and rhizospheric soil) in shaping the associated AMF assemblages. Our results showed that while inoculation caused a significant shift in AMF communities, the substrate contamination had a much stronger influence on their structure, followed by the biotope and plant identity to a lesser extent. Moreover, inoculation significantly increased plant biomass production and was associated with a decreased petroleum hydrocarbons dissipation in the contaminated soil. The outcome of this study provides knowledge on the factors influencing the diversity and community structure of AMF associated with indigenous plants following repeated inoculation of a bacterial consortium. It highlights the dominance of soil chemical properties, such as petroleum hydrocarbon presence, over biotic factors and inputs, such as plant species and microbial inoculations, in determining the plant-associated arbuscular mycorrhizal fungi communities.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Michael O. Eze

Environmental contamination by petroleum hydrocarbons is of concern due to the carcinogenicity and neurotoxicity of these compounds. Successful bioremediation of organic contaminants requires bacterial populations with degradative capacity for these contaminants. Through successive enrichment of microorganisms from a petroleum-contaminated soil using diesel fuel as the sole carbon and energy source, we successfully isolated a bacterial consortium that can degrade diesel fuel hydrocarbons. Metagenome analysis revealed the specific roles of different microbial populations involved in the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), and the metabolic pathways involved in these reactions. One hundred and five putative coding DNA sequences were identified as responsible for both the activation of BTEX and central metabolism (ring-cleavage) of catechol and alkylcatechols during BTEX degradation. The majority of the Coding DNA sequences (CDSs) were affiliated to Acidocella, which was also the dominant bacterial genus in the consortium. The inoculation of diesel fuel contaminated soils with the consortium resulted in approximately 70% hydrocarbon biodegradation, indicating the potential of the consortium for environmental remediation of petroleum hydrocarbons.


2019 ◽  
Author(s):  
Pauli S. Losoi ◽  
Ville P. Santala ◽  
Suvi M. Santala

AbstractEngineered microbial consortia can provide several advantages over monocultures in terms of utilization of mixed substrates, resistance to perturbations, and division of labor in complex tasks. However, maintaining stability, reproducibility, and control over population levels in variable conditions can be challenging in multi-species cultures. In our study, we modeled and constructed a synthetic symbiotic consortium with a genetically encoded carbon cross-feeding system. The system is based on strains of Escherichia coli and Acinetobacter baylyi ADP1, both engineered to be incapable of growing on glucose on their own. In a culture supplemented with glucose as the sole carbon source, growth of the two strains is afforded by the exchange of gluconate and acetate, resulting in inherent control over carbon availability and population balance. We investigated the system robustness in terms of stability and population control under different inoculum ratios, substrate concentrations, and cultivation scales, both experimentally and by modeling. To illustrate how the system might facilitate division of genetic circuits among synthetic microbial consortia, a green fluorescent protein sensitive to pH and a slowly-maturing red fluorescent protein were expressed in the consortium as measures of a circuit’s susceptibility to external and internal variability, respectively. The symbiotic consortium maintained stable and linear growth and circuit performance regardless of the initial substrate concentration or inoculum ratios. The developed cross-feeding system provides simple and reliable means for population control without expression of non-native elements or external inducer addition, being potentially exploitable in consortia applications involving precisely defined cell tasks or division of labor.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Rafaela Perdigão ◽  
C. Marisa R. Almeida ◽  
Filipa Santos ◽  
Maria F. Carvalho ◽  
Ana P. Mucha

Oil spill pollution remains a serious concern in marine environments and the development of effective oil bioremediation techniques are vital. This work is aimed at developing an autochthonous hydrocarbon-degrading consortium with bacterial strains with high potential for hydrocarbons degradation, optimizing first the growth conditions for the consortium, and then testing its hydrocarbon-degrading performance in microcosm bioremediation experiments. Bacterial strains, previously isolated from a sediment and cryopreserved in a georeferenced microbial bank, belonged to the genera Pseudomonas, Rhodococcus and Acinetobacter. Microcosms were assembled with natural seawater and petroleum, for testing: natural attenuation (NA); biostimulation (BS) (nutrients addition); bioaugmentation with inoculum pre-grown in petroleum (BA/P) and bioaugmentation with inoculum pre-grown in acetate (BA/A). After 15 days, a clear blending of petroleum with seawater was observed in BS, BA/P and BA/A but not in NA. Acetate was the best substrate for consortium growth. BA/A showed the highest hydrocarbons degradation (66%). All bacterial strains added as inoculum were recovered at the end of the experiment. This study provides an insight into the capacity of autochthonous communities to degrade hydrocarbons and on the use of alternative carbon sources for bacterial biomass growth for the development of bioremediation products to respond to oil spills.


2021 ◽  
Vol 9 (11) ◽  
pp. 2285
Author(s):  
Rafaela Perdigão ◽  
C. Marisa R. Almeida ◽  
Catarina Magalhães ◽  
Sandra Ramos ◽  
Ana L. Carolas ◽  
...  

This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation.


Sign in / Sign up

Export Citation Format

Share Document