Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency

2021 ◽  
pp. 126484
Author(s):  
Wenjie Yu ◽  
Litao Zhang ◽  
Jing Zhao ◽  
Jianguo Liu
Author(s):  
N. V. Shalygo

The accumulation of carotenoids (carotenogenesis) in the cells of Haematococcus pluvialis (strain IBCE H-17) upon cultivation in nutrient media deficient in nutrient elements (N and K + P) is shown. K and P deficiency in nutrient medium led to accumulation of astaxanthin, β-carotene, anteraxanthin, zeaxanthin and violaxanthin after 18 days of cultivation, while the amount of neoxanthin and lutein was at the control level. Carotenogenesis under such conditions was accompanied by high levels of chlorophyll (a + b). The use of nutrient medium deficient in N led to the accumulation of astaxanthin and, to a lesser extent, β-carotene in haematococcus cells, while lutein, anteraxanthin, zeaxanthin, violaxanthin and neoxanthin levels were lower or the same as control. N deficiency caused the decrease in amount of chlorophyll (a + b). Nitrogen deficiency was 4.3 times more effective than control medium and 1.8 times more effective than combined potassium and phosphorus deficiency in promoting astaxanthin accumulation.


Author(s):  
Tatyana V. Samovich ◽  
Ruslan G. Goncharik ◽  
Elizaveta I. Pechenkina ◽  
Yauhen V. Viazau ◽  
Nikolay V. Kozel

It was established that nitrogen deficiency initiated at the resting phase of Haematococcus pluvialis (H. pluvialis) is not an effective stress factor in combination with high light intensity to induce the accumulation of astaxanthin in algae cells. The amounts of astaxanthin in H. pluvialis cells in the absence of nitrogen were lower compared to those when complete Rudic medium was used, regardless of the light intensity. This fact indicates the need for a certain amount of nitrogen in the medium for the functioning of the astaxanthin synthesis system. In addition, the low yield of astaxanthin in the experimental variants cultivated on incomplete Rudic medium is associated with the insufficient amount of nitrogen for its biosynthesis and also with a decrease in the expression level of the PSY gene encoding a key enzyme of the carotenoid biosynthesis chain – phytoene synthase.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 337
Author(s):  
Feng Li ◽  
Ning Zhang ◽  
Yulei Zhang ◽  
Qingsheng Lian ◽  
Caiying Qin ◽  
...  

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


2021 ◽  
Vol 11 (4) ◽  
pp. 1788
Author(s):  
Thanh-Tri Do ◽  
Binh-Nguyen Ong ◽  
Tuan-Loc Le ◽  
Thanh-Cong Nguyen ◽  
Bich-Huy Tran-Thi ◽  
...  

In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.


2021 ◽  
Vol 22 (14) ◽  
pp. 7674
Author(s):  
Ting Liang ◽  
Zhengqing Yuan ◽  
Lu Fu ◽  
Menghan Zhu ◽  
Xiaoyun Luo ◽  
...  

Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 188
Author(s):  
Antia G. Pereira ◽  
Paz Otero ◽  
Javier Echave ◽  
Anxo Carreira-Casais ◽  
Franklin Chamorro ◽  
...  

Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.


Sign in / Sign up

Export Citation Format

Share Document