The application of personal glucose meters as universal point-of-care diagnostic tools

2020 ◽  
Vol 148 ◽  
pp. 111835 ◽  
Author(s):  
Fabio Lisi ◽  
Joshua R. Peterson ◽  
J. Justin Gooding
2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Katharina Ziegler ◽  
Anca Rath ◽  
Christoph Schoerner ◽  
Renate Meyer ◽  
Thomas Bertsch ◽  
...  

ABSTRACT Diagnosis of Lyme neuroborreliosis (LNB) is challenging, as long as Borrelia-specific intrathecal antibodies are not yet detectable. The chemokine CXCL13 is elevated in the cerebrospinal fluid (CSF) of LNB patients. Here, we compared the performances of the Euroimmun CXCL13 enzyme-linked immunosorbent assay (CXCL13 ELISA) and the ReaScan CXCL13 lateral flow immunoassay (CXCL13 LFA), a rapid point-of-care test, to support the diagnosis of LNB. In a dual-center case-control study, CSF samples from 90 patients (34 with definite LNB, 10 with possible LNB, and 46 with other central nervous system [CNS] diseases [non-LNB group]) were analyzed with the CXCL13 ELISA and the CXCL13 LFA. Classification of patients followed the European Federation of Neurological Societies (EFNS) guidelines on LNB. The CXCL13 ELISA detected elevated CXCL13 levels in all patients with definite LNB (median, 1,409 pg/ml) compared to the non-LNB controls (median, 20.7 pg/ml; P < 0.0001), with a sensitivity of 100% and a specificity of 84.8% (cutoff value, 78.6 pg/ml; area under the receiver operating characteristic [ROC] curve, 0.93). Similarly, the CXCL13 LFA yielded elevated CXCL13 levels in 31 patients with definite LNB (median arbitrary value, 223.5) compared to the non-LNB control patients (median arbitrary value, 0; P < 0.0001) and had a sensitivity and specificity of 91.2% and 93.5%, respectively (cutoff arbitrary value, 22.5; area under the ROC curve, 0.94). The correlation between the CXCL13 levels obtained by ELISA and LFA was strong (Spearman correlation coefficient r = 0.89; P < 0.0001). The CXCL13 ELISA and the CXCL13 LFA are comparable diagnostic tools for the detection of CXCL13 in the CSF of patients with definite LNB. The advantage of the CXCL13 LFA is the shorter time to result.


2022 ◽  
Author(s):  
Sharmili Roy ◽  
FAREEHA ARSHAD ◽  
Shimaa Eissa ◽  
Mohammadali Safavieh ◽  
Sanaa G. Alattas ◽  
...  

The rapid development of accurate and quick diagnostic tools for infectious diseases has made a massive impact in global health. POC devices for pathogen detection have primarily contributed to clinical...


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1464
Author(s):  
Florina Silvia Iliescu ◽  
Ana Maria Ionescu ◽  
Larisa Gogianu ◽  
Monica Simion ◽  
Violeta Dediu ◽  
...  

The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the development of diagnostic tools to manage the spread of disease. Currently, the “gold standard” involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2 detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR is labour-intensive, time-consuming, requires trained personnel and is not available in remote settings. This review summarizes and compares the available strategies for COVID-19: serological testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least, we address the advantages and limitations of these methods as well as perspectives in COVID-19 diagnostics. The effort is constantly focused on understanding the quickly changing landscape of available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid screening point of care testing. The last approach is key to aid the clinical decision-making process for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymptomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.


2021 ◽  
Vol 17 ◽  
Author(s):  
Rajasekhar Chokkareddy ◽  
Suvardhan Kanchi ◽  
Inamuddin

Background: While significant strides have been made to avoid mortality during the treatment of chronic diseases, it is still one of the biggest health-care challenges that have a profound effect on humanity. The development of specific, sensitive, accurate, quick, low-cost, and easy-to-use diagnostic tools is therefore still in urgent demand. Nanodiagnostics is defined as the application of nanotechnology to medical diagnostics that can offer many unique opportunities for more successful and efficient diagnosis and treatment for infectious diseases. Methods: In this review we provide an overview of infectious disease using nanodiagnostics platforms based on nanoparticles, nanodevices for point-of-care (POC) applications. Results: Current state-of-the-art and most promising nanodiagnostics POC technologies, including miniaturized diagnostic tools, nanorobotics and drug delivery systems have been fully examined for the diagnosis of diseases. It also addresses the drawbacks, problems and potential developments of nanodiagnostics in POC applications for chronic diseases. Conclusions: While progress is gaining momentum in this field and many researchers have dedicated their time in developing new smart nanodevices for POC applications for various chronic diseases, the ultimate aim of achieving longterm, reliable and continuous patient monitoring has not yet been achieved. Moreover, the applicability of the manufactured nanodevices to rural patients for on-site diagnosis, cost, and usability are the crucial aspects that require more research, improvements, and potential testing stations. Therefore, more research is needed to develop the demonstrated smart nanodevices and upgrade their applicability to hospitals away from the laboratories.


Diagnostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 22 ◽  
Author(s):  
Victoria Morgan ◽  
Lisseth Casso-Hartmann ◽  
David Bahamon-Pinzon ◽  
Kelli McCourt ◽  
Robert G. Hjort ◽  
...  

In this manuscript, we discuss relevant socioeconomic factors for developing and implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished communities. The distinct economic, environmental, cultural, and ethical paradigms that affect economically disadvantaged users add complexity to the process of technology development and deployment beyond the science and engineering issues. We begin by contextualizing the environmental burden of disease in select low-income regions around the world, including environmental hazards at work, home, and the broader community environment, where SNAPS may be helpful in the prevention and mitigation of human exposure to harmful biological vectors and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users, specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic challenges that are involved in the phased implementation of diagnostic tools in low-income markets and describe a micropayment-based systems-as-a-service approach (pay-a-penny-per-use—PAPPU), which may be catalytic for the adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide some insights into the social and ethical considerations for the assimilation of SNAPS to improve health outcomes in marginalized communities.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 605 ◽  
Author(s):  
Eva Kriegova ◽  
Regina Fillerova ◽  
Petr Kvapil

Due to the lack of protective immunity in the general population and the absence of effective antivirals and vaccines, the Coronavirus disease 2019 (COVID-19) pandemic continues in some countries, with local epicentres emerging in others. Due to the great demand for effective COVID-19 testing programmes to control the spread of the disease, we have suggested such a testing programme that includes a rapid RT-qPCR approach without RNA extraction. The Direct-One-Step-RT-qPCR (DIOS-RT-qPCR) assay detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one hour while maintaining the high sensitivity and specificity required of diagnostic tools. This optimised protocol allows for the direct use of swab transfer media (14 μL) without the need for RNA extraction, achieving comparable sensitivity to the standard method that requires the time-consuming and costly step of RNA isolation. The limit of detection for DIOS-RT-qPCR was lower than seven copies/reaction, which translates to 550 virus copies/mL of swab. The speed, ease of use and low price of this assay make it suitable for high-throughput screening programmes. The use of fast enzymes allows RT-qPCR to be performed under standard laboratory conditions within one hour, making it a potential point-of-care solution on high-speed cycling instruments. This protocol also implements the heat inactivation of SARS-CoV-2 (75 °C for 10 min), which renders samples non-infectious, enabling testing in BSL-2 facilities. Moreover, we discuss the critical steps involved in developing tests for the rapid detection of COVID-19. Implementing rapid, easy, cost-effective methods can help control the worldwide spread of the COVID-19 infection.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 397 ◽  
Author(s):  
Arutha Kulasinghe ◽  
Hanjie Wu ◽  
Chamindie Punyadeera ◽  
Majid Warkiani

There is growing awareness for the need of early diagnostic tools to aid in point-of-care testing in cancer. Tumor biopsy remains the conventional means in which to sample a tumor and often presents with challenges and associated risks. Therefore, alternative sources of tumor biomarkers is needed. Liquid biopsy has gained attention due to its non-invasive sampling of tumor tissue and ability to serially assess disease via a simple blood draw over the course of treatment. Among the leading technologies developing liquid biopsy solutions, microfluidics has recently come to the fore. Microfluidic platforms offer cellular separation and analysis platforms that allow for high throughout, high sensitivity and specificity, low sample volumes and reagent costs and precise liquid controlling capabilities. These characteristics make microfluidic technology a promising tool in separating and analyzing circulating tumor biomarkers for diagnosis, prognosis and monitoring. In this review, the characteristics of three kinds of circulating tumor markers will be described in the context of cancer, circulating tumor cells (CTCs), exosomes, and circulating tumor DNA (ctDNA). The review will focus on how the introduction of microfluidic technologies has improved the separation and analysis of these circulating tumor markers.


2019 ◽  
Vol 4 (10) ◽  
Author(s):  
Christoph Krafft ◽  
Jürgen Popp

Abstract A potential role of optical technologies in medicine including micro-Raman spectroscopy is diagnosis of bacteria, cells and tissues which is covered in this chapter. The main advantage of Raman-based methods to complement and augment diagnostic tools is that unsurpassed molecular specificity is achieved without labels and in a nondestructive way. Principles and applications of micro-Raman spectroscopy in the context of medicine will be described. First, Raman spectra of biomolecules representing proteins, nucleic acids, lipids and carbohydrates are introduced. Second, microbial applications are summarized with the focus on typing on species and strain level, detection of infections, antibiotic resistance and biofilms. Third, cytological applications are presented to classify single cells and study cell metabolism and drug–cell interaction. Fourth, applications to tissue characterization start with discussion of lateral resolution for Raman imaging followed by Raman-based detection of pathologies and combination with other modalities. Finally, an outlook is given to translate micro-Raman spectroscopy as a clinical tool to solve unmet needs in point-of-care applications and personalized treatment of diseases.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4289 ◽  
Author(s):  
Heba A. Hussein ◽  
Rabeay Y. A. Hassan ◽  
Marco Chino ◽  
Ferdinando Febbraio

Coronaviruses have received global concern since 2003, when an outbreak caused by SARS-CoV emerged in China. Later on, in 2012, the Middle-East respiratory syndrome spread in Saudi Arabia, caused by MERS-CoV. Currently, the global crisis is caused by the pandemic SARS-CoV-2, which belongs to the same lineage of SARS-CoV. In response to the urgent need of diagnostic tools, several lab-based and biosensing techniques have been proposed so far. Five main areas have been individuated and discussed in terms of their strengths and weaknesses. The cell-culture detection and the microneutralization tests are still considered highly reliable methods. The genetic screening, featuring the well-established Real-time polymerase chain reaction (RT-PCR), represents the gold standard for virus detection in nasopharyngeal swabs. On the other side, immunoassays were developed, either by screening/antigen recognition of IgM/IgG or by detecting the whole virus, in blood and sera. Next, proteomic mass-spectrometry (MS)-based methodologies have also been proposed for the analysis of swab samples. Finally, virus-biosensing devices were efficiently designed. Both electrochemical immunosensors and eye-based technologies have been described, showing detection times lower than 10 min after swab introduction. Alternative to swab-based techniques, lateral flow point-of-care immunoassays are already commercially available for the analysis of blood samples. Such biosensing devices hold the advantage of being portable for on-site testing in hospitals, airports, and hotspots, virtually without any sample treatment or complicated lab precautions.


2015 ◽  
Vol 35 ◽  
pp. 92-103
Author(s):  
Teresa R.G. Barroso ◽  
Verónica C. Martins ◽  
Filipe Cardoso ◽  
Susana Cardoso ◽  
Jorge Pedrosa ◽  
...  

Tuberculosis is still a major global health concern, causing the estimated death of 1.5 million people per year and being associated with high morbidity. The development of point-of-care diagnostic tools for tuberculosis is mandatory, especially because the fast and accurate detection of the slow-growing Mycobacterium tuberculosis by the conventional diagnostic tests is difficult.The objective of this work was to develop the first steps to achieve a portable method for the diagnosis of tuberculosis, by a sandwich-immunoassay combined with magnetoresistive biochip technology.With the purpose of conjugating 250 nm streptavidin-coated magnetic nanoparticles with anti- M.tuberculosis biotinylated antibodies, Mycobacteriumbovis Bacillus Calmette-Guérin was used as a surrogate for M. tuberculosis bacteria. After magnetic capture, target bacteria were brought in contact with the surface of the magnetoresistive biochip previously functionalized with a secondary anti-M. tuberculosis antibody. Magnetically labeled cells were detected by an array of spin-valve sensors, which change their electrical resistance in the presence of the fringe field of the magnetic particles. Optimization studies on the efficiency of the magnetic capture and further recognition of the bacteria by the secondary antibody on the biochip surface were conducted. The results on the magnetoresistive biochip showed a clear difference in the signal between specific and control (non-specific) sensors, suggesting the usefulness of this technique as a potential biorecognition tool for the development of a point-of-care diagnostic method for tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document