scholarly journals Surfacing curve networks with normal control

2016 ◽  
Vol 60 ◽  
pp. 1-8 ◽  
Author(s):  
Tibor Stanko ◽  
Stefanie Hahmann ◽  
Georges-Pierre Bonneau ◽  
Nathalie Saguin-Sprynski
1970 ◽  
Vol 23 (03) ◽  
pp. 593-600
Author(s):  
P Pudlák ◽  
I Farská ◽  
V Brabec ◽  
V Pospíšilová

Summary1. The following coagulation changes were found in rats with experimental hypersplenism: a mild prolongation of the recalcification time, shortened times in Quick’s test, a lowered activity in plasma thrombin time and shortened times in the partial thromboplastin test. Concentrations of factor II, V, VII (+X), VIII and X did not differ from those of normal control rats.2. The administration of adrenaline to hypersplenic rats induced the correction of the partial thromboplastin test, Quick’s test and plasma thrombin time to normal values. Concentrations of coagulation factors were not significantly changed. An increase was found in factor V.3. Splenectomy performed in hypersplenic rats was followed by a shortened recalcification time, a prolongation of the partial thromboplastin test and of the test with partial thromboplastin and kaolin. A prolongation was also observed in Quick’s test. Complete correction of plasma thrombin time was not observed. The concentration of factor VII increased.4. The administration of adrenaline to splenectomized rats with experimental hypersplenism did not induce any significant changes with the exception of a corrected plasma thrombin time and a decreased concentration of factor VIII.5. A different reaction of factor VIII to adrenaline in normal and hypersplenic rats is pointed out.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
M Kaga ◽  
Y Inoue ◽  
N Kokubo ◽  
A Ishiguro ◽  
A Gunji ◽  
...  

Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 443.2-443
Author(s):  
Y. F. Qing ◽  
J. Zheng ◽  
S. B. Wang ◽  
F. Dai ◽  
Y. Jiang ◽  
...  

Background:Growing evidences have demonstrated that autophagy is a powerful regulators in the pathogenesis of fibrosis and autoimmune diseases. Autophagy abnormalities in SSc involve abnormal autophagy-related protein and autophagy-related gene polymorphism[1-2], however there is a few reports on the expression and clinical significance of autophagy-related genes.Objectives:To investigate the expression and clinical significance of autophagy-related genes LC-3 mRNA, Becline-1 mRNA, Agt-3 mRNA, Agt-5 mRNA, Agt-12 mRNA and Agt-16L1 mRNA in peripheral blood mononuclear cells (PBMC) of systemic sclerosis (SSc).Methods:51 cases of SSc and 60 cases of normal control were received from the Affiliated Hospital of North Sichuan Medical College, and autophagy-related genes were detected by RT-PCR. SPSS19.0 statistical software was used to compare the expression of autophagy-related genes between groups and analyze the relationship between autophagy-related genes and clinical data, P<0.05 was considered statistically significantResults:LC-3, Becline-1, and Agt-3 were highly expressed in SSc compared with normal control [LC-3: 0.78(0.60) ×10-3 vs. 0.52(0.54) ×10-3; Beclin-1: 6.68(3.56)×10-3 vs. 5.22(3.54)×10-3; Agt-3: 17.58(12.33)×10-3 vs. 11.00(4.56)×10-3, P<0.05], however Agt-5, Agt-12 and Agt-16L1 of autophagy-related genes were not statistically significant [AGT-5: 6.67(3.58) ×10-3 vs. 6.67(2.64) ×10-3; AGT-12: 8.64(5.56)×10-3 vs. 8.57(4.66)×10-3; Agt-16L1: 2.69(2.19)×10-3 vs. 2.52(2.26)×10-3] (Figure 1). Beclin-1 and Agt-5 high expressed in SSc with the positive of anti-SSA/Ro antibody. LC-3 was positively correlated with Age(r=0.662) and ESR(r=0.355) (all P<0.05).Conclusion:Autophagy-related genes were increased in PBMC of SSc, and were correlated with Age, ESR and autoantibody, suggested that autophagy is a key feature in the pathogenesis of systemic sclerosis.Figure 1.The relative expression of autophagy-related genesReferences:[1]LIU C, ZHOU X, LU J, et al. Autophagy mediates 2-methoxyestradiol-inhibited scleroderma collagen synthesis and endothelial-to-mesenchymal transition induced by hypoxia[J]. Rheumatology, 2019;58(11):1966–1975.[2]Mayes M D, Bossini-Castillo L, Gorlova O, et al. Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis[J]. The American Journal of Human Genetics, 2014,94(1):47-61.DOI:10.1016/j.ajhg.2013.12.002.Disclosure of Interests:None declared


Author(s):  
Xitong Yang ◽  
Pengyu Wang ◽  
Shanquan Yan ◽  
Guangming Wang

AbstractStroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-15
Author(s):  
Hye Won Lee ◽  
Byung-Seob Ko ◽  
Suna Kang ◽  
Jin Ah Ryuk ◽  
Min Joo Kim ◽  
...  

We investigated whether dangguijakyak-san (DJY) and dangguijihwang-tang (DJH), oriental medicines traditionally used for inflammatory diseases, could prevent and/or delay the progression of postmenopausal symptoms and osteoarthritis in osteoarthritis-induced estrogen-deficient rats. Treated ovariectomized (OVX) rats consumed either 1% DJY or 1% DJH in the diets. Positive-control rats were given 30 μg/kg bw 17β-estradiol and control rats were given 1% fat as were the normal-control rats. All rats received high-fat diets for 8 weeks. At the 9th week, OVX rats received articular injections of monoiodoacetate (MIA) or saline (normal control) into the right knee. At 3 weeks after MIA injection, DJY reduced visceral-fat mass and improved glucose metabolism by reducing insulin resistance, whereas DJH increased BMD and decreased insulin resistance. DJH improved weight distribution in the right knee and maximum running velocity on a treadmill at days 14 and 21 as much as those of the positive control. TNF-α, IL-1β, and IL-6 levels in articular cartilage were much higher in the control than the positive control, whereas both DJY and DJH reduced the levels to those of the positive control. The histological analysis assessed articular cartilage damage near the tidemark and proteoglycan loss in the control versus the positive control; DJY and DJH prevented this damage and proteoglycan loss. In conclusion, DJY may provide an effective treatment for improving glucose tolerance, and DJH may be appropriate for preventing osteoarthritis.


2014 ◽  
Vol 171 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Fahimeh Ramezani Tehrani ◽  
Sonia Minooee ◽  
Fereidoun Azizi

ObjectiveInsulin resistance (IR) and metabolic disorders are common in polycystic ovary syndrome (PCOS). However, it is still not clear which adiposity marker could precisely predict metabolic syndrome (MetS) in women with PCOS and whether these indexes are different in normo-ovulatory non-hirsute women.DesignA case–control study was conducted on a total of 175 Iranian subjects with PCOS and 525 normal control subjects, aged 18–45 years.MethodsWaist circumference (WC), BMI, waist-to-hip ratio, lipid accumulation product (LAP) index, and visceral adiposity index (VAI) were examined and the homeostasis model assessment index was calculated. MetS was defined according to the joint interim statement. The receiver operating characteristic curves were used to evaluate the extent to which measures of adiposity can predict IR and MetS risk.ResultsLAP index and VAI are two indicators (sensitivity and PPV of 70% (LAP index) and 60% (VAI), and 80% (LAP index) and 83% (VAI) respectively) that best predict IR in women with PCOS. Among healthy women, the LAP index and WC were better markers (sensitivity and PPV of 78% (LAP index) and 75% (VAI), and 82% (LAP index) and 81% (VAI) respectively). The two most reliable indicators for prediction of MetS among PCOS and normal women were the WC and VAI (sensitivity and PPV of 83% (WC) and 81% (VAI), and 97% (WC) and 95% (VAI) respectively) and the VAI and LAP index (sensitivity and PPV of 88% (VAI) and 83% (LAP index), and 98% (VAI) and 98% (LAP index) respectively) respectively.ConclusionsWhile the appropriate adiposity indicators and their optimum cutoff values vary in women with PCOS, compared with the normal control subjects, the LAP index is an easily obtainable index that might be useful for screening of cardiometabolic complications among both groups.


1996 ◽  
Vol 90 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Helen M. Keane ◽  
Nick Sheron ◽  
John Goka ◽  
Robin D. Hughes ◽  
Roger Williams

1. Soluble tumour necrosis factor receptors released into the circulation inhibit the effects of excess tumour necrosis factor-α and represent an important protective response. 2. In this study we have measured the levels of tumour necrosis factor and soluble tumour necrosis factor receptors p55 and p75 in the plasma of 10 patients with fulminant hepatic failure and 10 healthy control subjects. The capacity of the plasmas at varying dilutions to inhibit the biological activity of 1000 pg/ml of recombinant tumour necrosis factor in a tumour necrosis factor cytotoxicity assay in vitro was also determined. 3. The mean plasma levels of tumour necrosis factor in patients with fulminant hepatic failure (48.4 ± 10.9 pg/ml) were significantly increased compared with normal control subjects (6.1 ± 1.04 pg/ml, P < 0.01). Plasma soluble tumour necrosis factor receptors p55 and p75 were also significantly elevated in patients with fulminant hepatic failure (18.16 ± 9.94 ng/ml and 16.06 ± 9.93 ng/ml respectively) when compared with normal control subjects (1.28 ± 0.24 ng/ml and 1.62 ± 0.91 ng/ml, P < 0.001). 4. Fulminant hepatic failure plasma had a much lower capacity to inhibit tumour necrosis factor bioactivity in vitro, with a statistically significant difference between the inhibitory capacity of the fulminant hepatic failure and normal plasma seen at plasma dilutions of 1:5 and 1:20 (P < 0.05). 5. The reduced tumour necrosis factor neutralization capacity observed in fulminant hepatic failure, despite the increased levels of soluble tumour necrosis factor receptors, suggests enhanced susceptibility to the potential deleterious effects of tumour necrosis factor in fulminant hepatic failure.


Sign in / Sign up

Export Citation Format

Share Document