scholarly journals Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii

2019 ◽  
Vol 26 (5) ◽  
pp. 745-755.e7 ◽  
Author(s):  
Jiefei Wang ◽  
Zachery R. Lonergan ◽  
Giovanni Gonzalez-Gutierrez ◽  
Brittany L. Nairn ◽  
Christina N. Maxwell ◽  
...  
Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2534-2544 ◽  
Author(s):  
Katy M. Clemmer ◽  
Robert A. Bonomo ◽  
Philip N. Rather

The Gram-negative pathogen Acinetobacter baumannii strain M2 was found to exhibit a robust surface motility on low-percentage (0.2–0.4 %) agar plates. These patterns of motility were dramatically different depending on whether Difco or Eiken agar was used. Motility was observed in many, but not all, clinical and environmental isolates. The use of drop collapse assays to demonstrate surfactant production was unsuccessful, and the role of surfactants in A. baumannii M2 motility remains unclear. Surface motility was impaired by an insertion in pilT, encoding a gene product that is often required for retraction of the type IV pilus. Motility was also dependent on quorum sensing, as a null allele in the abaI autoinducer synthase decreased motility, and the addition of exogenous N-(3-hydroxy)-dodecanoylhomoserine lactone (3-OH C12-HSL) restored motility to the abaI mutant. Transposon mutagenesis was used to identify additional genes required for motility and revealed loci encoding various functions: non-ribosomal synthesis of a putative lipopeptide, a sensor kinase (BfmS), a lytic transglycosylase, O-antigen biosynthesis (RmlB), an outer membrane porin (OmpA) and de novo purine biosynthesis (PurK). Two of the above genes required for motility were highly activated by quorum sensing, and may explain, in part, the requirement for quorum sensing in motility.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sung-Pang Chen ◽  
Eric H-L Chen ◽  
Sheng-Yung Yang ◽  
Pin-Shin Kuo ◽  
Hau-Ming Jan ◽  
...  

Searching for new antimicrobials is a pressing issue to conquer the emergence of multidrug-resistant (MDR) bacteria and fungi. Antimicrobial peptides (AMPs) usually have antimicrobial mechanisms different from those of traditional antibiotics and bring new hope in the discovery of new antimicrobials. In addition to antimicrobial activity, stability and target selectivity are important concerns to decide whether an antimicrobial peptide can be applied in vivo. Here, we used a simple de novo designed peptide, pepD2, which contains only three kinds of amino acid residues (W, K, L), as an example to evaluate how the residues and modifications affect the antimicrobial activity against Acinetobacter baumannii, stability in plasma, and toxicity to human HEK293 cells. We found that pepI2 with a Leu→Ile substitution can decrease the minimum bactericidal concentrations (MBC) against A. baumannii by one half (4 μg/mL). A D-form peptide, pepdD2, in which the D-enantiomers replaced the L-enantiomers of the Lys(K) and Leu(L) residues, extended the peptide half-life in plasma by more than 12-fold. PepD3 is 3-residue shorter than pepD2. Decreasing peptide length did not affect antimicrobial activity but increased the IC50 to HEK293 cells, thus increased the selectivity index (SI) between A. baumannii and HEK293 cells from 4.7 to 8.5. The chain length increase of the N-terminal acyl group and the Lys→Arg substitution greatly enhanced the hemolytic activity, hence those modifications are not good for clinical application. Unlike colistin, the action mechanism of our peptides relies on negatively charged lipids rather than lipopolysaccharides. Therefore, not only gram-negative bacteria but also gram-positive bacteria can be killed by our peptides.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mant CT ◽  
Jiang Z ◽  
Gera L ◽  
Davis T ◽  
Hodges RS

We designed de novo and synthesized two series of five 26-residue amphipathic α-helical cationic antimicrobial peptides (AMPs) with five or six positively charged residues (D-Lys, L-Dab (2,4-diaminobutyric acid) or L-Dap (2,3-diaminopropionic acid)) on the polar face where all other residues are in the D-conformation. Hemolytic activity against human red blood cells was determined using the most stringent conditions for the hemolysis assay, 18h at 37°C, 1% human erythrocytes and peptide concentrations up to 1000 μg/mL (~380 μM). Antimicrobial activity was determined against 7 Acinetobacter baumannii strains, resistant to polymyxin B and colistin (antibiotics of last resort) to show the effect of positively charged residues in two different locations on the polar face (positions 3, 7, 11, 18, 22 and 26 versus positions 3, 7, 14, 15, 22 and 26). All 10 peptides had two D-Lys residues in the center of the non-polar face as “specificity determinants” at positions 13 and 16 which provide specificity for prokaryotic cells over eukaryotic cells. Specificity determinants also maintain excellent antimicrobial activity in the presence of human sera. This study shows that the location and type of positively charged residue (Dab and Dap) on the polar face are critical to obtain the best therapeutic indices.


2021 ◽  
Vol 31 (4) ◽  
pp. 51-60
Author(s):  
Vu Nhi Ha ◽  
Kieu Chi Thanh ◽  
Nguyen Thai Son ◽  
Dao Van Thang ◽  
Tran Huy Hoang

Acinetobacter baumannii (A. baumannii) is currently ranked as the frst concern for the development of new antibiotics due to its capacity of resistance to all available families of antibiotics. The most common mechanism of antibiotic resistance development in A. baumannii is through the acquisition of mobile genetic elements such as plasmid, transposon and integrons carrying resistance genes. A. baumannii strain TN81 was isolated from sputum specimen of a 45-year-old man at Thanh Nhan Hospital (Hanoi, Vietnam) and confrmed to be a multidrug resistance strain with high minimum inhibitory concentration value of 8/9 type of antibiotics, especially colistin. De novo assembly of the whole genome shotgun sequence of strain TN81 yielded an estimated genome size of 3,739,193 bp with 593 contigs and N50 is 9,126 bp. MLST analysis showed that TN81 belongs to ST164, which was frst reported as genome assembly in Vietnam. Resistance genes identifcation through database found that TN81 contained 12 genes encoding for antibiotic resistance. Notably, we performed de novo assembly of plasmid through short read sequence and identifed two potential plasmid-encoded antibiotic resistance genes (ant(2’’)-Ia / aadB and tet (39), which were reported for the first time as in ST164 group. This study aimed to investigate the plasmid-containing antibiotic resistance genes from a nosocomial isolate of Acinetobacter baumannii. Conclusively, all of these results would be crucial information on antibiotic resistance in A. baumannii in Vietnam.


2015 ◽  
Vol 3 (4) ◽  
Author(s):  
Saranya Vijaykumar ◽  
Veeraraghavan Balaji ◽  
Indranil Biswas

Acinetobacter baumannii is an emerging Gram-negative pathogen responsible for health care–associated infections. In this study, we determined the genome of a motility-positive clinical strain, B8342, isolated from a hospital in southern India. The B8342 genome, which is 3.94 Mbp, was generated by de novo assembly of PacBio long-read sequencing data.


Author(s):  
Robert W. Deering ◽  
Kristen E. Whalen ◽  
Ivan Alvarez ◽  
Kathryn Daffinee ◽  
Maya Beganovic ◽  
...  

AbstractThe emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


2021 ◽  
Author(s):  
Adam Valcek ◽  
Pierre Bogaerts ◽  
Olivier Denis ◽  
Te-Din Huang ◽  
Charles Van der Henst

Objectives: To describe the genotypic epidemiological distribution and the antibiotic resistance mechanisms of recent carbapenem-resistant Acinetobacter baumannii (CRAb) strains recovered from clinical samples in Belgium. Methods: A total of 40 clinical isolates of CRAb collected by the national reference center from 19 acute-care hospitals through national microbiological surveillance in 2014 and 2017 were analysed in this study. The isolates were tested for antimicrobial susceptibility by broth microdilution and determined for carbapenemase-encoding genes by multiplex PCR targeting major carbapenemases families. Isolates were subjected to whole-genome sequencing (WGS) with Illumina technology and the complete chromosomal sequences were de novo assembled. Genome analysis was performed to identify intrinsic and acquired resistance determinants and to characterize clonal lineage according to the sequence type (ST). Results: All 40 isolates were resistant to carbapenems and exhibited extensively drug-resistant phenotype with blaOXA-23 (n=29) being the most abundant detected acquired AMR gene with 38 isolates encoding at least two different types of OXA enzymes. The majority of the isolates were globally disseminated clones of ST2 (n=25) while less frequent sequence types such as ST636 (n=6), ST1 (n=3), ST85 (n=2) and per one isolate from ST604, ST215, ST158 and ST78 were also detected. Conclusions: We have detected extensively drug-resistant globally occurring clones of A. baumannii ST1 and ST2 throughout Belgium as well as other sporadic ST including ST636 causing local outbreaks. Our results show the presence of high-risk clones of A. baumannii with common travel importation and the crucial need of constant surveillance.


Sign in / Sign up

Export Citation Format

Share Document