scholarly journals An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles

Chemosphere ◽  
2021 ◽  
pp. 131345
Author(s):  
Mathias Busch ◽  
Angela A.M. Kämpfer ◽  
Roel P.F. Schins
2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Sungryong Oh ◽  
Joohee Jung

Abstract Background The incidence and mortality of liver cancer show a great difference between the sexes. We established sex-dependent liver cancer xenograft models and investigated whether such sex-dependent models could be used to simultaneously evaluate the therapeutic and adverse effects of anticancer drugs for drug screening. Results In the in-vitro test, the cytotoxicity of anticancer drugs (cisplatin, 5-fluorouracil, and doxorubicin) was compared between male- and female-derived liver cancer cell lines. Cisplatin and 5-fluorouracil exhibited cytotoxicity without sex-difference, but doxorubicin showed dose-dependently significant cytotoxicity only in male-derived cells. Our results showed a strong correlation between preclinical and clinical data with the use of sex-dependent liver cancer xenograft models. Moreover, the male-derived Hep3B-derived xenograft model was more sensitive than the female-derived SNU-387-derived xenograft model against doxorubicin treatment. Doxorubicin showed more severe cardiotoxicity in the male xenograft model than in the female model. We investigated the occurrence frequency of doxorubicin-related cardiotoxicity using data obtained from the Korea Institute of Drug Safety & Risk Management Database, but no significant difference was observed between the sexes. Conclusions Our results suggest that sex-dependent xenograft models are useful tools for evaluating the therapeutic and adverse effects of anticancer drugs, because sex is an important consideration in drug development.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


2020 ◽  
Vol 22 (1) ◽  
pp. 53
Author(s):  
Sheng Zhu ◽  
Victor Häussling ◽  
Romina H. Aspera-Werz ◽  
Tao Chen ◽  
Bianca Braun ◽  
...  

Co-culture models have become mandatory for obtaining better insights into bone homeostasis, which relies on the balance between osteoblasts and osteoclasts. Cigarette smoking (CS) has been proven to increase the risk of osteoporosis; however, there is currently no proven treatment for osteoporosis in smokers excluding cessation. Bisphosphonates (BPs) are classical anti-osteoclastic drugs that are commonly used in examining the suitability of bone co-culture systems in vitro as well as to verify the response to osteoporotic stimuli. In the present study, we tested the effects of BPs on cigarette smoke extract (CSE)-affected cells in the co-culture of osteoblasts and osteoclasts. Our results showed that BPs were able to reduce CSE-induced osteoporotic alterations in the co-culture of osteoblasts and osteoclasts such as decreased matrix remodeling, enhanced osteoclast activation, and an up-regulated receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin (OPG) ratio. In summary, BPs may be an effective alternative therapy for reversing osteoporotic alterations in smokers, and the potential mechanism is through modulation of the RANKL/OPG ratio.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gheed Al-Hity ◽  
FengWei Yang ◽  
Eduard Campillo-Funollet ◽  
Andrew E. Greenstein ◽  
Hazel Hunt ◽  
...  

AbstractInvestigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design.


Spine ◽  
2006 ◽  
Vol 31 (25) ◽  
pp. 2918-2925 ◽  
Author(s):  
Daniel Haschtmann ◽  
Jivko V. Stoyanov ◽  
Ladina Ettinger ◽  
Lutz -P. Nolte ◽  
Stephen J. Ferguson

Sign in / Sign up

Export Citation Format

Share Document